Steam Power Plants / Steam Generator

Enabling flexibility: thermal feasibility studies and condition monitoring
Denis Tschetschik
Head of Mods & Upgrade Group Mechanical Engineering: HRSG/Fired Boiler, Balance of Plant

PG SO EN MTEC
Tel: +49 1525 53 14 370

Freyeslebenstrasse 1
D-91058 Erlangen
Germany
Overview – Topics

1. Partload Issues for fired Steam Boiler
2. Part Load Test in Dadri 6 (NTPC Plant)
3. Results and recommendation

3.1 Thermal Feasibility Study
3.2 Boiler/BOP Fatigue Analysis
3.3 Optimization of Existing Controls
 Condition Monitoring incl.
 Boiler Fatigue Monitoring System (FMS)
1. Partload Issues for fired Steam Boiler

- Mills + Pulverizer
- Burner + Combustion
- Pressure Part (ECO/EVAP/SH)
- Air Heater
- ESP
Part Load Technical Issues

Part Load Challenges:

1. Fuel Composition (knowledge of the fuel composition and of the fuel properties incl. ash is very important for the steam generator design)
2. Fuel supply system (Mill operation diagram, Mill operation concept, Pressure drop, Air bypass flap, Control system, Mill classifier behavior, Mechanical restrictions of mill etc.)
4. Evaporator Stability (at first Benson Evaporator, Activated Burner Level) / ECO Stability for possible ECO outlet steaming
5. Boiler Outlet Parameters (HP/RH Temperature, Control system, Flue gas damper, Activated Burner Level, Attemperator)
6. APH (Water/Sulphur dew point), Flue gas pollution (ESP efficiency)
7. SCR (Operation temperature window)
Example of mill operation diagram (4 mills, Once-through boiler)

Low-NOx Vortex Coal Burner

Bowl Mill
Mass Flux Range in Drum- and Once-through (Benson) Boilers

Heat flux profile for:
- Base Load
- 70 % Load
- 40 % Load

Natural circulation: the critical heat flux is achieved only at extrem boundary conditions.
Possible Solutions for pressure part (Evaporator/ECO/Superheater)

<table>
<thead>
<tr>
<th>Measures</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design optimization of heating surfaces in heat flux</td>
<td>Reduction of thermal stress</td>
</tr>
<tr>
<td>critical zone</td>
<td>• Increase of allowable heat flux</td>
</tr>
<tr>
<td>Rifled tubes</td>
<td>• Prevention of boiling crisis (DNB – Departure from Nucleate Boiling)</td>
</tr>
<tr>
<td>Retrofit / Re-design of attemperators</td>
<td>Improvement- / Increase of spray water mass flow</td>
</tr>
<tr>
<td></td>
<td>Better water mixing (evaporation distance)</td>
</tr>
<tr>
<td>Orifice at Inlet / Outlet ECO, ECO Recirculation</td>
<td>Establishment of smooth and uniform flow distribution in the tubes</td>
</tr>
<tr>
<td>Orifice at Evaporator Inlet</td>
<td>Improvement of dynamic stability</td>
</tr>
<tr>
<td>Pressure compensation header in Evaporator</td>
<td></td>
</tr>
<tr>
<td>Upgrade of Superheater drains</td>
<td>Effective removal of condensate during start-up</td>
</tr>
<tr>
<td>Increase of RH outlet temperature for Part Load</td>
<td>Implementation of RH slide pressure curve, Activation of upper burner level, Activation of positive tilting of burner</td>
</tr>
</tbody>
</table>
2. Part Load Test in Dadri 6 (NTPC Plant)
Part Load Test in Dadri 6 (NTPC Plant)

In 2006 the Indian Prime Minister and the German Chancellor established the Indo-German Energy Forum (IGEF) to promote an energy dialogue.

Various initiative and efforts were suggested and implemented in cooperation with the Excellence Enhancement Centre (EEC) – promoting Energy Efficiency and Energy Security in the Indian Power Sector.

As a part of this effort, NTPC aims at reducing minimum load in several power plants, including Dadri units 5 & 6.

A team of EEC/VGB/Siemens representatives were given the opportunity to test minimum load in Dadri unit 6 on June 21st and June 22nd, 2018.
Test for Boiler part stable load reduction
Load regime during the minimum load tests
Test for faster load Ramp up / Ramp down between min and base loads

Load regime during the ramp tests
3. Results and recommendation
Results and recommendation

During the both tests, there were no major thermal/mechanical restrictions of the mills, combustion, air flow and flue gas, main steam/RH pressures and temperatures, drum level and economizer.

Recommendations:

1. Thermal Feasibility Study

2. Fatigue Analysis (FEM calculation)

3. Optimization of Existing Controls (Control and Automatic Mill Operation, fans, boiler feed pumps and mills automatically into operation, Main Steam Temperature Control, Reheat Steam Temperature Control, Flue Gas Temperature Control)

4. Condition Monitoring incl. Boiler Fatigue Monitoring System (Condition monitoring systems should monitor highly loaded boiler and piping components against creep and fatigue. Such a system monitors the temperature differences, pressure, and signals when the allowable limits during load changes have been exceeded)
3.1 Thermal Feasibility Study

A thermal feasibility study of the boiler and the turbine for minimum load based on test data is required in order to avoid long-term damages and limitations to the boiler and turbines systems.

Such a study would involve the evaluation of process limitations and an assessment of the influences of low load operation and temperature- and pressure gradients on the boiler and turbine components and equipment. Thermal and mechanical models of the plant will be constructed, calibrated with test measurement data and applied.

Since other Indian power plants are built with the same setup, these models can be used for the rollout into the 500 MW fleet.
The thermal boiler model is constructed by using computer software **DEFOS** (boiler performance calculation tool developed under BENSON license), which permits a detailed representation of the thermodynamic and heat transfer processes across the complete boiler system based on engineering principles and analysis.
Check of relevant firing boiler components during Feasibility Study

- Heating surface SH (thermodynamical, hydraulical, mechanical)
- Piping (thermodynamical, hydraulical, mechanical)
- Drums/seperator and evaporators (thermohydraulic, Benson)
- ECOs (thermodynamic, hydraulic, bypass)
- Flue gas part (slaging, fouling, velocities, abrasion, pressure drop)
- ID/FD/PD- fans and other components
- Water desuperheaters, temperature control
- Casing; casing insulation
- APH
- Control valves, Safety valves
- I&C
- Pumps
- Flashtank
3.2 Boiler/BOP Fatigue Analyses

Two origins of boiler fatigue

Fatigue from cyclic operation

- During Start / Shutdown / Loadchanges: Changing steam pressure and steam temperature
- Result: Alternating Stresses at boiler pressure parts
- **Cracks** occur after a certain **number of cycles** depending on Stress variation range

Creep fatigue

- Material strength reduces during steady state operation at high temperature and at high pressure
- **Cracks** occur after a certain **operation time**

At Siemens MTEC we calculate the percentage of fatigue with **FEM-Simulations**
Boiler/BOP Fatigue Analysis
What are FEM-Simulations?

FEM = **Finite Element Method**

- FEM is a numerical method to compute the physical behavior of any system.
- The system is split into small sections, which are "Finite Elements".

General fields of application

- Mechanical Simulation: Stresses, deformations, …
- Thermal Simulation: Heat conduction, temp. fields, …
- Fluid Dynamics: Flow distribution, flow velocities, …
- Modal Analysis: Resonance frequencies, …
- Electromagnetic Analysis: Magnetic fields, …
- etc.
Our Approach and Advantages of FEM-Simulations

Our Approach

1. **Thermal-Transient** Simulation to calculate the temperature distribution during Start & Shutdown
2. **Static-Mechanical** Simulation to calculate stress trends from thermal and mechanical stress
3. Evaluation of stress variation range according to DIN EN 12952-3 to calculate the **fatigue of one loadcycle in %**
4. Calculation of **creep fatigue** according to DIN EN 12952-4 with the software Probad
5. Extrapolation of current and future component fatigue based on startup-counting and future load regime

Advantages compared to simplified method

- More accurate boundary conditions
- More precise stress calculation
- Assessment of welds possible
- „Complicated geometries“ possible
Selection of SPPA-P3000 References
Profitable, reliable and flexible plants - worldwide

Parish, USA
- Low Loss Start
- Minimum Load Reduction
- Fast Ramp

ValesPoint, Australia
- Fast Ramp
- Temperature Optimizer
- Minimum Load Reduction
- Low Throttling

Callide, Australia
- Fast Ramp
- Maximum Load Plus
- Temperature Optimizer
- Dispatch Control

Neurath, Germany
- Frequency Control
- Dispatch Control
- Low Throttling
- Minimum Load Reduction

Elverlingsen, Germany
- Combustion Optimizer
- NOx Reduction

Altbach, Germany
- Frequency Control
- Sootblower Optimizer
- Lifetime Plus

Dingzhou, China
- Dispatch Control
- Temperature Optimizer
- Lifetime Plus

Cottam, UK
- NOx Reduction

11/30/2018
Denis Tschetschik / Power and Gas
3.3 Optimization of Existing Controls
Condition Monitoring incl. Boiler Fatigue Monitoring System (FMS)

The situation:
A power plant unit needs to be operated at the most profitable operating point at all times. This generally calls for greater **flexibility**, higher **efficiency**, better **availability** and lower **emissions**.

Our solution:
SPPA-P3000 Process Optimization solutions
SPPA-P3000 Minimum Load Reduction
Reduced minimum load level

Task
To upgrade the plant so that the specified minimum load level can be reduced and to make the plant capable of fast and low-stress load increases on demand in accordance with market requirements.

Solution
- Use of robust state space controller for unit control
- Adaptation, optimization and setting of lower-level controls for new minimum load level
- Adaptation or addition of control sequences, burner and mill scheduler
- Provision of additional instrumentation where necessary

Benefit e.g. 500,000 €/a → Benefit calculation
- Reduced financial losses during off-peak periods
- Faster response to increased load demands as unit does not need to be shut down
- Avoidance of unnecessary startups and shutdowns

The Minimum Load Reduction solution results in savings for minimum load operation through optimization of lower-level controls.
SPPA-P3000 Best Point
Optimum steady-state plant operation

Task
To ensure fast provision of information about deviations from optimum operation and to calculate consequential costs for detection of improvement potentials

Solution
• Online calculation of key process data on the basis of a thermodynamic process model
• Validation of process data
• Interactive process analysis for "what if?" scenarios for the purposes of optimized operation and investment decisions

Benefit, e.g. 100,000 – 300,000 €/a → Benefit calculation
• Early detection of malfunctions and deviations from optimum operating point
• Reduced maintenance costs through qualified problem analysis
• Reduced power generation costs

A thermodynamic plant model generates significant indicators for profit-optimized plant operation.
SPPA-P3000 Uptime Plus

Early detection of emerging damage

Task
Extensive condition monitoring of the plant processes to maximize availability and avoid costly reductions in performance and outages.

Solution
- Earliest possible damage detection based on empirical values from plant’s operating history
- Rapid and precise localization of an event thanks to alarms in the DCS
- Monitoring of all plant components and processes, also in quasi-steady-state conditions
- Individual model generation for your plant

Benefit, e.g. 180,000 €/a → Benefit calculation
- Prevent unscheduled downtime
- Shorten scheduled outage times
- Plan maintenance and repair work in a proactive and anticipatory manner
- Minimize load on machines and components

Uptime Plus

Uptime Plus reveals potential malfunctions long before absolute limits are exceeded

Signal exceeds predefined instrumentation and control limits

Condition monitoring with Uptime Plus detects possible damage at the earliest possible moment and thus creates more time for proactive measures.
Boiler Fatigue Monitoring System (FMS)

Customer Challenge:
- Ensure maximum lifetime of HRSG and adapt operating modes accordingly

Solution
- Determination of creep and low-cycle fatigue
- Component specific calculation acc to EN 12952
- Online calculation
- Long-term data storage
- Transparency in relation to impact of operating mode on residual life
- Detection and prevention of high-wear operating modes
- Optimum selection of point in time for requisite overhaul and inspection
- Cost-effective in-service monitoring and analysis
- Integrated into „T3000“

Calculation of the total theoretical lifetime of highly stressed components based on creep fatigue and low-cycle fatigue