IQONY Projects on Repowering and Repurposing – Enhancing power plants' site potential

Our shareholder structure

We are at home in Germany and Europe. Cross-divisional cooperation creates customer proximity and synergies.

Sector Coupling, Multi Energy Systems and Energy Hubs

Hub¹

6

- > the <u>central</u> or main part of something, where there is most activity.
- > the central part of a wheel into which the spokes are fixed.
- > a machine that connects several computers together [IT].

Energy Hub²

 \rightarrow are sites, where different energy sources are used, transported, converted or stored.

Steam

iqony

7

The utilisation of existing energy infrastructure even from coal industry is an economic must

The utilisation of existing energy infrastructure even from coal industry is an economic must

Herne Power Plant Site

10

- 1962 2000 Unit 1 150 MWel
- 1963 2014 Unit 2 150 MWel
- 1966 2017 Unit 3 300 MWel
- 1989 ongoing Unit 4 500 MWel, 550 MJ/s

2022 - ongoing - Unit 6 - 650 MWel, 400 MJ/s

Since the 70ties main supplier of the STEAG heating network with

- Grid length of 714 km
- 275,000 Customers
- 1.6 TWh heat supply

2016 - ongoing - Battery System (BESS) 15 MW, 20 MWh

• Frequency Control

Power Plant Herne

-

Combined cycle power plant Herne

Project Combined Cycle Power Plant Herne

Project type and fuel	Single-shaft-combined-cycle-power- plant/natural gas
Location	CHP Herne (STEAG)
Project volume	Approx. 500 Mio. € (incl. financing costs and approx. 17 Mio. € site measures)
Project financing	Non-Recourse-project financing, credit period 20 years from Financial Close, CHP funding according to KWKG
Capacity (Gross)	~650 MW in condensing operation, District heating 400 MJ/s
Overall efficiency	More than 85% with full district heating decoupling
Electrical efficiency	More than 60% in condensing operation

Significant CO₂ emissions Reduction

kg CO₂/MWh_{el+th}

Herne 4 CCPP Herne 6

Specific emission factors: natural gas 200 kg $CO_2/MWh(H_u)$; hard coal 335 kg CO_2/MWh The electrical output drops by 88 MW (theoretically) in the CCPP plant at 400 MJ/s heat extraction, and by 70 MW in Herne 4.

15

iqony

Völklingen Fenne Power Plant Site

- 1982 ongoing MKV 179 MWel
- 1989 ongoing HKV 210 MWel
- 1989 ongoing GT 35 MWel with HRSG
- 2002 ongoing Gas engines for mine gas 42 MWel

Since the 70ties main supplier of the FVS heating network with

- Grid length of 600 km
- 14,000 Customerns
- 0.5 TWh heat supply

2016 - ongoing - Battery System (BESS) 15 MW, 20 MWh

• Frequency Control

Hydrohub Fenne – Project facts

Goal

16

Generation of green hydrogen and oxygen, especially to support decarbonisation in hard to abate industries like steel industry or public transport in the Saar region.

Site

Völklingen-Fenne (SL), existing power plant site.

Pipeline connection

Site is connected to oxygen and NG grid. The NG grid shall be transformed to hydrogen grid and connected to the **mosaHYc**-project.

iqony

Project facts

Electrolysis capacity	appr. 53 MW _{el} PEM-Electrolysis
Amount of H2 produced	~990 kg H ₂ /h
FID	expected Q1/2024
Commissioning	2027

Duisburg Walsum Power Plant Site

- 1957 1988 Unit 6 68 MWel
- 1959 2014 Unit 7 150 MWel
- 1960 1988 Unit 8 150 MWel
- 1988 2017 Unit 9 410 MWel
- 2013 ongoing Unit 10 790 MWel

2016 - ongoing - Battery System (BESS) 15 MW, 20 MWh

• Frequency Control

Project Developments at Duisburg Walsum Site

HV line incl. safety zone (Amprion)

2 380 kV Switchyard (Amprion)

19

3 Electrolyser up to 550 MWel

4 Steady Green Energy 150 MW, 600 MWh (BESS)

5 Walsum Unit 10 790 MW USC: first studies on conversion to low carbon fuel (e.g. biomass, natural gas)

- 6 DoHa Hydrogen Pipeline
- 7 15 MW, 20 MWh BESS

8

Walsum unit 7 – 9 (decommissioned)

iqony

Green Hydrogen for the future of the heavy industry: HydrOxy Hub Walsum

iqony

HIJULE

Facts:

20

- ✓ H₂ lighthouseproject to reach climate goals
- ✓ Significant decarbonisation of the industry in Duisburg
- ✓ Goal: Production of green hydrogen(H_2) and heat
- ✓ Production of approx. 16,000 tonnes of green hydrogen per year
- ✓ Footprint: approx. 50,000 m²
- ✓ innovative Technology: plant design is modular, first phase of 150MW electrical power, further 2 phases to reach 500MW
- ✓ Planned commissioning: End of 2027

Summary

CO₂ reduction target makes coupling of the sectors mandatory.

Power infrastructure in populated and industrialized area

iqony

shall be converted into Energy hubs, which

- are couplings between the sectors,
- have trained personal,
- enable multi-purpose business models,
- provide flexible solution close to the energy demand,
- are important for a successive transformation in contrast to North-South segregation.

Coal fired power plant sites enable very large advantages for future climate-neutral energy supply and are one part of solution for decarbonization of industry

Get the latest updates on our activities and projects

Jan Hintzen Phone +49 201 801-2861 Jan.Hintzen@iqony.energy

Iqony Solutions GmbH Rüttenscheider Straße 1-3 45128 Essen Tel. +49 201 801-01 www.iqony.energy

