Flexible operation of Thermal Power Plants – OEM Perspective and Experiences

Sandeep Chittora, Power Generation Services, Siemens Limited
<table>
<thead>
<tr>
<th>Table of content</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Technology Development at Steam Power Plants</td>
</tr>
<tr>
<td>• Capacity, Demand and Supply</td>
</tr>
<tr>
<td>• Market requirements for flexible operation</td>
</tr>
<tr>
<td>• Technical background: transient operation</td>
</tr>
<tr>
<td>• ST measures to improve transient operation</td>
</tr>
<tr>
<td>• ST measures to improve part load operation</td>
</tr>
<tr>
<td>• Measures for fast load ramping</td>
</tr>
<tr>
<td>• Monitoring systems</td>
</tr>
<tr>
<td>• reference</td>
</tr>
</tbody>
</table>
Technology development of steam parameters

Reference examples state-of-the-art efficiency

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SPP Bergkamen</td>
<td>747 MW</td>
<td>SPP Boxberg</td>
<td>906 MW</td>
<td>SPP Yuhuan</td>
<td>1,000 MW</td>
</tr>
<tr>
<td>SPP efficiency</td>
<td>39%</td>
<td>42%</td>
<td>45%</td>
<td>46%</td>
<td>52+%)</td>
</tr>
<tr>
<td>Pressure (bar)</td>
<td>190</td>
<td>260</td>
<td>262</td>
<td>270</td>
<td>325</td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td>530 / 530</td>
<td>540 / 580</td>
<td>600 / 600</td>
<td>600 / 610</td>
<td>610 / 630 / 630</td>
</tr>
</tbody>
</table>

1) Gross efficiency achievable with this technology – offered

 Restricted © Siemens AG 2017
Page 3 01.12.2017 Sandeep Chittora Power Generation Services
Market requirements
Generation scenario in Germany and India

Development of capacity of renewables Germany

Installed capacity ~ 50% in 2014!

Installed Generation Capacity India (GW)

- Hydro
- Solar
- Wind onshore
- Wind offshore
- Biomass fraction of waste

2014

Installed capacity (GW)

0 10 20 30 40 50 60 70 80 90

Installed capacity

9.9 GW

8.4 GW

33.6 GW

55.6 GW

85 GW

184 GW

Installed generation capacity India (GW)

- Hydro
- Nuclear
- Gas
- Coal
- Renewables

Mar-01
Mar-11
Jan-14
Jul-16
Oct-17

Coal
Nuclear
Gas
Hydro
Renewables

61
94
139
186
304
330

101
172
233
304

10
18
20
43
25

38
40
25
6

18
29
44
60
Anticipated Scenario in 2022 with 100 GW Solar & 60 GW Wind

- Lower Technical Minimum
 - Faster Ramp up

- Primary and Secondary frequency Control
 - Faster Ramp down

- Ramp rates can be higher with sudden onset of wind generation. Can change significantly with season.
Technical background: Transient Operation

Recent Findings at a Highly Cycling Unit (operated outside limits)

Main steam valve

Crack depth: 50% wall thickness
Siemens Fleet in India

Modernize existing plant with flexible operation as key element to them
Market requirements: Changed operational regimes require highly flexible products

Power on Demand
- Flex Operation Line
- Standard Operation Line
- Power on Demand
- Grid Services
- Minimum Part Load
- Maintenance Flexibility

- ST Stress Controller
- SPP Hot Start On The Fly
- HP internal bypass cooling
- Advanced Fast Loading
- ST EOH Counter 4.0
- Low Loss Start
- Fast Start / Hot Start

- Advanced Fast Loading
- Primary Frequency Response
- Condensate throttling
- Dispatch Control
- Maximum Load Plus

- HP Turbine with Last MS-Valve
- Partial Bypass Concept
- Part Load Optimization Package
- Minimum Load Reduction
- Top Feedwater Heater
- Fast Preservation
- Fast Cooling
- ST Hot Standby
- FMS

30+ Products
Power on Demand
Reduction of Wall Thickness to Improve Start Up & Cycling Capabilities

Example: Reduced Casing thickness & reduced thermal piston loading by HP bypass cooling

Significant improvement in LCF
Power on Demand
Monitoring of flexibility consequences: steam turbine EOH counter 4.0

Task
- Part load may lead to steam temperature changes, especially hot rehear temperature
- Thermal stresses during operation are not considered in standard counting of equivalent operating hours (EOH counter)
- Maintenance needs may not be recognized

Solution
- Evaluation of operational history
- Implementation of a state of the art EOH counter considering load changes

Benefits
- More accurate EOH counting
- Improved outage planning
- Enhanced operational flexibility

I. Generation
EOH consumption is a function of actual thermal stress

II. Generation
Introduction of three start-up modes with fixed EOH consumption

III. Generation
EOH counting also considering load changes

IV. Generation
EOH counter 4.0 considering load changes
Grid Services
Measures for fast load ramping

1. Throttling
2. Additional valve
3. Condensate throttling
4. HP heater
5. Fuel increase
Grid Services

Increase turbine swallowing capacity to use boiler storage

- Remove throttling of control valves
- Opening of last main steam valve

Diagram showing the process with steps 1 and 2, and a graph illustrating efficiency with different conditions such as throttled, control stage, and pure sliding pressure.

Restricted © Siemens AG 2017
Page 12 01.12.2017 Sandeep Chittora Power Generation Services
Grid Services
First Condensate throttling based primary frequency control in India

- Enlarge storage volume
- Fast condensate control valve
- Fast control valves in LP extractions

NTPC Dadri Stage II – Unit #6 490 MW
Grid Services
Example for grid code compliance
Further solutions for flexible operation
Minimum Load Reduction

Task
To upgrade the plant so that the specified minimum load level can be reduced and to make the plant capable of fast and low-stress load increases on demand in accordance with market requirements.

Solution
• Use of robust state space controller for unit control
• Adaptation, optimization and setting of lower-level controls for new minimum load level
• Adaptation or addition of control sequences, burner and mill scheduler
• Provision of additional instrumentation where necessary

Benefits
• Reduced financial losses during off-peak periods
• Faster response to increased load demands as unit does not need to be shut down
• Avoidance of unnecessary startups and shutdowns

The Minimum Load Reduction solution results in savings for minimum load operation through optimization of lower-level controls.
Part Load: Efficiency improvement
Top heater for improved heat rate and lower NOx emissions

a. Steam from stage bypass connection
b. Is activated at part load
c. Final feed water temperature vs. load constant or even increasing
d. HR improvement of ~ 0.6% @ 50% load

Wai Gao Qiao 3, China 2008, 1040MW
Part Load Optimization: Centralized frequency variable power system

Solution: feed frequency variable turbine from main turbine extractions, supply frequency variable power to motors of fans and pumps.

- House power rate has been reduced from 3.5% to less than 2% (SCR and FGD included)
- Higher reliability compared to conventional electronic frequency convertors
Online calculation of Boiler Fatigue Components is possible

Both Creep Fatigue and Low cycle fatigue calculated

Depending upon the actual operating mode, residual life of critical components is determined
Maintenance Flexibility
Fatigue Monitoring System

How much fatigue is it?

Don’t Guess when you can actually measure it
Further I&C solutions for flexible operation
Reference case: DCS Retrofit in Neurath Units D and E

<table>
<thead>
<tr>
<th></th>
<th>starting situation</th>
<th>contract</th>
<th>proven (trial run)</th>
<th>further possible potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load gradient</td>
<td>5 MW/min</td>
<td>12 MW/min</td>
<td>15 MW/min</td>
<td>20 MW/min</td>
</tr>
<tr>
<td>Minimum load (gross)</td>
<td>440 MW</td>
<td>290 MW</td>
<td>270 MW (w/o bypass operation)</td>
<td>250 MW (with risks, e.g. minimum fire interlock)</td>
</tr>
<tr>
<td>Primary frequency control (PFC)</td>
<td>18 MW by throttling of inlet valves</td>
<td>18 MW by condensate throttling</td>
<td>45 MW</td>
<td>50 MW</td>
</tr>
<tr>
<td>Secondary frequency control (SFC)</td>
<td>n.a.</td>
<td>66 (75) MW</td>
<td>100 MW</td>
<td>110-115 MW</td>
</tr>
<tr>
<td>Simultaneous PFC and SFC</td>
<td>n.a.</td>
<td>18 MW 66 (75) MW</td>
<td>18 MW 75 MW</td>
<td>still under investigation</td>
</tr>
</tbody>
</table>

Contractual targets considerably exceeded!

- 2 x 600 MW units, lignite fired
- Built 1975
- Originally designed and run as base-load plants

RWE Neurath
Europe’s 2nd biggest lignite fired coal power Plant (4'400 MW)
Further I&C solutions for flexible operation

Selected references

Frequency & Dispatch Control

- **Altbach, Germany**
 420 MW, hard coal:
 5% in 30 s up to 100% load
 (with turbine & condensate throttling + partial deactivation of HP preheaters)

- **Dingzhou, China**
 600 MW, hard coal:
 Boiler delay reduced from 180s to 40s for load ramps up to 4%/min (with throttling)

- **Dadri, India**
 490 MW
 35 MW (~7%) in 20 s
 (with condensate throttling + HP reserve)

Reliable and efficient start-ups

- **Franken I, Germany**
 383MW, gas, built 1973:
 20% reduction of start-up costs

- **Steag Voerde, Germany**
 700 MW, hard coal, built 1985:
 Minimum sustainable load w/o oil support and bypass reduced from 280 (40%) to 140 MW (20 %)

Reduced minimum load

- **Callide, Australia**
 420 MW, hard coal:
 Max. load +10 %
 1,400 h/year max. load through controlled HP bypass deactivation
Contact information

Sandeep Chittora
Advisory Expert – Steam Turbine Performance
Siemens Limited, India

Phone: +91 124 2842650
Mobile: +91 9971170337
E-mail: sandeep.chittora@siemens.com