

The total damage because of environmental degradation because of thermal power plants amounts to Rs 3.75 trillion (US \$80 billion). This is equivalent to 5.7 per cent of the country's GDP

Emission reduction measures Overview & experiences Presented by:

Kota.BhanuPrakash

Domestic experiences feed back units commissioned after 2003.

steag

•					
*	500 MW sized boilers installed around 2002/3 had 64 ESP fields.	Parameter mg/Nm3	Limit		Actual
*	Emission levels are in the range of 100-120mg/nm3		Old	New	
*	SOX levels are in the range 1000-1300 mg/NM3	SPM (at 12	100	50	100-120
*	NOX levels are in the range 350-450mg/NM3(low NOx burners)	%CO2)	200	200	000 1200
*	Emission levels are better on sets with higher fields(80).	307	200	200	900-1300
*	When other than design coal is fed, the SPM levels are higher	NOX	600	300	350-450
*	Ammonia dosing is done at few stations, but the results are not favorable.				
*	Corrosion was noticed on ESP discharge plates and Stack flue				
*	Complete ash dislodge from collecting plates is also an issue.				
*	Some stations are planning to increase in ESP size for SPM control.				
*	Auto controls are required for the dosing systems				
*	Fabric filters are very effective in controlling SPM 40mg/Nm3.But high maintenance				

	Raw Coal Constituent	Combustion Result	Required Equipment
tow NOx Burners	Carbon (C)	Heat, Steam, CO2	Boilers
	Nitrogen (N)	NO _X	Burners and SCR Systems
	Sulfur (S)	SO2	Wet and Dry FGD
		SO3	Sorbent Injection, Wet ESP
	Ash	Ash	Ash Handling, Sootblow- ers, Precipitators, Fabric Filters
	Mercury (Hg)	Hg ⁺⁺ , Hg0	Coal Additive, PAC Injection, Wet FGD Enhancement Systems

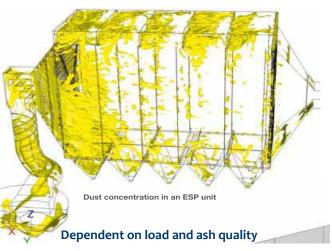
Meeting the new Environmental norms

The task cut out....

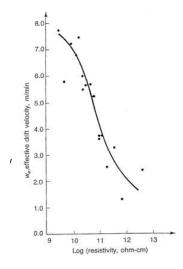
Suspended particulate matter(SPM) and its control

Electro static precipitators , Fabric (Bag) filters Flue gas conditioning

Electro Static Precipitator(ESP)


steag

- The ESP efficiency depends on
- particle migration velocity and, the Specific Collection Area(SCA)
- Resistivity of the ash particles (ideal values 5X108 to 5X10^10 ohm-cm)
- Migration velocity is low for higher resistive particles.(high voltage drops cause low forces)
- Resistivity varies with, So3 content, ash chemical composition and temperature.
- The resistivity is low at high temperatures.
- The resistivity is high for low sulfur coals(low SO3)
- Ash Constituents: Silica and Allumina in Ash are insulators.
- The SCA is calculated based on assumed migration velocity
- So, the ESP's loose effectiveness on these account.
- This necessitates


Large ESP's, Flue gas conditioning for the control of emission.

/e,effecti 3.0

$$\eta = 1 - \exp\left(-\frac{w_e WL}{Q}\right) = 1 - \exp\left(-\frac{w_e A}{Q}\right)$$

Less pressure drops, Low maintenance

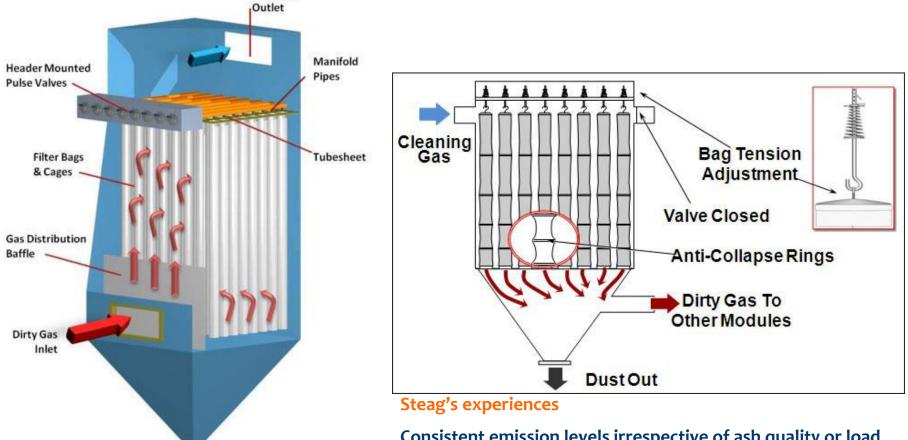
Flue gas conditioning Effective removal of SPM

- Flue gas conditioning alters the resistivity reduces SCA requirement
- SO3 is a popular conditioning agent{Sulfur on burning and oxidation gives SO3}
- SO3 is injected in traces at below dew point temperatures.(matured technology)
- SO3 condenses on particulate matter, and collected in ESP, emission levels are not affected.
- NH3 injection helps in agglomeration of PM and improves collection.
- With dual conditioning, ESP's can be 20-30% smaller.
- A wet ESP is effective for PM10 and PM 2.5(washing of electrodes against rapping)
- **Concern:** Slurry and solids after was disposal is a concerns.

Coal Analysis (% Wt)						
Carbon	40.0	40.0	54.7	34.5	32.11	27.8
Moisture	10.0	10.0	4.90	6.7 to 6.8	0.99	21.1
Sulphur	0.5	0.5	0.38	0.4	N/A	N/A
Ash	40.0	40.0	29.8	51.4	52.94	42
Injection of	0	0	0	0	0	18
SO ₃ (Kg/hr)						
Injection of	22	15	30	30	28	14
NH ₃ (Kg/hr)						
SPM level before	120.6	350	247	800	410	400
injection (mg/Nm ³)						
SPM level after	80	120	49	82	74	130
injection (mg/Nm ³)						

Data source: Chemithon engineers

Reduced particulate emissions Bag Filters


steag

Pulse jet type (economic & site layout)

Clean Gas

reverse air type

(reverse gas fans, offline compartment cleaning)

Consistent emission levels irrespective of ash quality or load Higher pressure drops(higher energy) Higher maintenance(bags replacement)