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1. Coal and Combustion process

2. Boiler losses and efficiency

3. Combustion measurement and optimization
4. Online diagnostic optimization

5. Advance Optimization techniques

Date | Title of Presentation Page 2



steag

Coal and its analysis

e Inhomogeneous organic fuel formed mainly
from decomposed plant matter.

e (Qver 1200 coals have been classified.

e different coal types:
(Peat)
Lignite
Bituminous coal , i
Anthracite e e O
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Elemental Composition

Proximate Analysis

P

Coal Analysis

4

»d

C 65-95%
H 2-7%

O <25%

S <10%

N 1-2%
Char 20-70%
Ash 5-15%
H,O 2-207%
VM 20-45%
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Proximate analysis:
Determination of TM, FC, VM, Ash content and
heat value

Used for characterizing the coal for its use

Ultimate analysis: Elemental analysis of carbon,
Hydrogen, Nitrogen, Sulfur and other elements
contained in fuel

It is derived from the proximate analysis of coal

Used in determining the quantity of air required
for combustion and the volume and
composition of the combustion gases for
furnace design
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Proximate to Ultimate analysis

%C = | 0.97C+0.7(VM - 0.1A) - M(0.6-0.01M)
%H = 10.036C +0.086 (VM -0.1xA) - 0.0035M° (1-0.02M)
%N, | = [2.10-0.020 VM
where
C = | % of fixed carbon
A = | % of ash
VM = | % of volatile matter
M = | % of moisture
Parameter Indian Coal Indonesian South
Coal African Coal
Moisture 5.98 9.43 8.5
Ash 38.63 13.99 17
Volatile matter 20.70 29.79 23.28
Fixed Carbon 34.69 46.79 51.22
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Heat Value of coal

HHV: Higher heating value: the heat of vaporization of the water is released and
becomes part of the heating value.

Lower heating value, LHV :heating value in which the water remains a vapor and
does not yield its heat of vaporization.

Thus the energy difference between the two values is due to the heat of
vaporization of water,

HHV = LHV + hfg
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Coal rank Indian and Imported

Grade

OHmMON W

(in kCal/kg)
Exceeding 6200
5600 — 6200
4940 — 5600
4200 — 4940
3360 — 4200
2400 — 3360
1300 — 2400

Calorific Value Range

steag

Table 1.4

GCV for Various Coals

Parameter

Lignite Indian Coal
(Dry Basis)

Indonesian Coal

South African Coal

GCV (kcal/kg)

4.500" 4.000

5,500

6.000
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Effect of carbon content on Heat value

Bituminous Bituminous Indonesian
Coal
Coal Coal
(Sample I)
(Sample II)
Moisture (%) 5.98 4.39 9.43
Mineral matter (%) 38.63 47.86 13.99
Carbon (%) 42.11 36.22 58.96
Hydrogen (%) 2.76 2.64 4.16
Nitrogen (%) 1.22 1.09 1.02
Sulphur (%) 0.41 0.55 0.56
Oxygen (%) 9.89 7.25 11.88
GCV (Kcal/kg) 4000 3500 5500
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Indian and imported coals

Parameter Indian Coal Indonesian South
Coal African Coal

Moisture 5.98 9.43 8.5

Ash 38.63 13.99 17

Volatile matter 20.70 29.79 23.28

Fixed Carbon 34.69 46.79 51.22
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Significance of Various elements of coal

Fixed carbon:

Solid fuel left after volatile matter is distilled off. It consists of mostly carbon.
*Gives a rough estimate of heating value of coal

Volatile Matter:

It is an index of the gaseous fuels present.

Volatile Matter

*Proportionately increases flame length, and helps in easier ignition of coal.
*Sets minimum limit on the furnace height and volume.

Influences secondary air requirement and distribution aspects.

*Influences secondary oil support
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Significance of Various Parameters in steaq

Proximate Analysis

Ash Content:

Ash is an impurity that will not burn.

*Reduces handling and burning capacity.
*Increases handling costs.

*Affects combustion efficiency and boiler efficiency
*Causes clinkering and slagging.

Moisture Content:

Moisture in coal must be transported, handled and stored. Since it replaces
combustible matter, it decreases the heat content per kg of coal.

*Increases heat loss, due to evaporation and superheating of vapour
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Typical analysis of Indian coal

Range of
Range of 95% coal 5% coal
Si. supplies supplies
No. Characteristics Column-1 | Column-2 | Column-3 | Column-4
Design Worst Best
Coal Coal Coal
1.0 | Proximate Analysis
{As received basis)
1.1 Total Moisture (%) 14 15 12 10-17
1.2 | Ash (%) 40 46 3z 30-50
1.3 | Volatile Matter (%) 22 19 24 24-17
1.4 Fixed Carbon (%) 24 20 32 34-16
2.0 Ultimate Analysis (As o
received basis) '
21 | Carbon (%) 35 29.0 42 45.0-265
2.2 Hydrogen (%) 23 1.88 3 3.50-1.75
2.3 | Nitrogen (%) 083 0.52 1 1.25-0.6
24 | Oxygen (%) 7.24 6.96 9.23 10.0-5.0
2.5 | Sulphur (%) 0.28 0.25 0.34 0.22-08
2.6 | Carbonates - (%) 0.3 0.35 0.27 0.42-0.2
2.7 | Phosphorous (%) 0.05 0.04 0.06 0.07-0.03
2.8 | Total Moisture (%) 14 15 12 10-17
29 | Ash (%) 40 46 32 30-50
2.10 | GCV (KecallKg) (%) 3300 2800 4200 4500 - 2600
2.11 | Hard Grove Index 55 53 58 45 -60
3.0 | Ash Analysis Range of 95% supplies
3.1 Silica (Si0;) - (%) 59.5 61.2-602 59.0 - 62
3.2 | Alumina (Al,O3) 29.63 30-29 275-315
3.3 | iron Oxide (Fe,0,) (%) 432 4.1-4.42 3.8 -5.20
3.4 | Titania (TiOy) (%) 1.72 1.60-1.75 15-18
3.5 | Phosphoric Anhydride (%)} 1.57 0.51-0.61 048-0.7
38 | Lime (Ca0) (%} 1.53 1.50 - 1.62 1.46-1.82
3.7 | Magnesia (MgO) (%) 0.57 0.50 -0.70 04-038
3.8 | Sulphuric Anhydride (%) 0.28 0.25-0.29 0.22-0.4
3.9 | Alkalies (N2,0+K;0) (%) 00.88 - 06-1.93
4.0 } Ash Fusion Range
4.1 | Initial Deformation Temp.’C 1100 1100 - 1200 >1050
42 | Hemispherical Temp. °C >1400 - >1450
43 | Flow Temp. °c >1450 >1450

steag
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Boiler Losses and efficiency
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Quick recap: Boiler losses

Dry gas loss: sensible heat carried out of the stack [ 5-6%]

Moisture loss: loss due to vaporizing the moisture in the fuel [2%]

Incomplete combustion loss: [oss due to combustion of carbon that results in carbon
monoxide (CO), instead of, carbon dioxide (CO2) [0.2-0.5%]
Hydrogen Loss: Hydrogen in the fuel converts to H20 [4%]

Unburned carbon loss: loss due to carbon that does not get combusted and ends up in
the refuse (ash) [1%]

Moisture in the combustion air loss: loss due to heating up water vapor contained in
the combustion air [0.2-0.25%]
Radiation loss: heat lost from the external furnace walls to the surrounding air [1%]

Total losses [13-15%]
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Boiler Losses efficiency

LOAD UNITS 500 MW 400MW 300MW 250MwW
Evaporation t/h 1498.5 1198.9 909.3 772.9
Fuel e D Guarantee Coal ---—----
Higher Heating value Kcal/lkg 3300
Ambient Temperature Deg.C 13
Relative Humidity Yo 60
Air moisture Kg/kg of 0.008 -
dry air
Excess Air at AH inlet Y 20
Gas temperature leaving AH Deg.C 1156 113 112 111
(corrected)
Heat losses and Efficiency
I} Heat losses due to flue %
gases :
- Dry gas loss 4.25 4.22 4.26 4.28
- Hydrogen in Fuel 3.96 3.95 3.95 3.95
- Maisture in Fuel 2.29 2.29 2.29 2.29
- Moisture in air 0.04 0.04 0.04 0.04
- Total heat loss due to - :
flue gases 10.54 10.50 10.54 10.56
ii) Heat loss due to unburnt %
carbon in
- Furnace bottom ash }
- Fly ash 1.20 1.20 1.20 1.20
- Total heat loss due to
unburnt carbon 1.20 1.20 1.20 1.20
1 iii) Sensible heat loss in %
- Furnace bottom ash 0.416 0.416 0.416 0.416
- Economiser hopper 0.033 0.031 0.029 0.027
- Air heater hopper 0.006 0.008 0.006 0.008
- ESP hopper 0.142 0.139 0.138 0.136
- Total sensible heat loss 0.597 0.592 0.589 0.585
iv) Heat loss due to radiation % 0.115 - 0.139 0177 0.206
v) Manufacturer's margin Y% 0.100 0.100 0.100 0.100
vi}) Unaccounted heat loss %
- Bottom radiation 0.098 0.101 0.105 0.107
- Mill reject + co 0.080 0.080 0.080 0.080
Total unaccounted heat loss 0178 0.181 0.185 0.187
vii) Totayheat losses % 12.73 12.71 12.79 12.84
(sum of Sl.nos. {i) to (vi))
vii) Heat credits Y% Not accounted as not permitted by
specification
viii) Steam generator efficiency | % 8727 | 8729 | 8721 | 87.16

steaq
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Cost of losses

Parameter Deviation Effect on Heat Rate
Excess Air (02) per % 7.4 KcallkWh
Exit Gas Temp per °C 1.2 Kcal/kWh
Unburnt Carbon per % 10-15 Kcal/kWh
Coal moisture per % 2-3 Kcal/kWh
Boiler Efficiency per % 25 KcallkWh

1 kcal reduction ~ 1.2 & 3 T/day saving in coal in 200/500 MW units @ 90%
PLF & 3600 GCV; CO, reduction ~ almost 1.25 times coal saved

Operator Controllable Losses — Dry Flue Gas & Unburnt Carbon Loss
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Combustion- a brief discussion
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Combustion

Coal is a hydrocarbon with CHNOS as main elements

Fuel + Oxidizer -—-Products of combustion + Energy

Primary combustion reaction

Fuel Alr Combustion Heat
The combustion process: |[C+H| + [Op+Ny| ———  |CO; + H;O + N,

Secondary combustion products : NOx, SOx, CO and unburnt fuel
NOx and Sox (ppm) : air pollutants.
CO and unburnt fuel : a waste of available heat,loss of efficiency

Combustion efficiency:

[Heat In Fuel-Heat carried away by flue gas from the stack] /[Heat in the fuel]
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Process of coal combustion

homogeneous
‘ , combustion CO,, H,0, ...

coal particle
p-coal, d=30-70um

heterogeneous
Q \ \ combustion » CO, H,0, ...

devolatilization

tdevolatile:l'5rnS tvolatiles:50'100ms tchar:]-'zsec
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Physical process of coal combustion

. Turbulent/swirling flow of air and coal.

- Turbulent/convective/molecular diffusion of gaseous reactants and
products.

. Convective heat transfer through the gas and between the gas and coal
particles.

. Radiatiion heat transfer between the gas and coal particles and between

the coal/air mixture and the furnace walls
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Requirements for complete combustion

four basic criteria :

1. Adequate quantity of air (oxygen) supplied to the fuel,

2. Oxygen and fuel thoroughly mixed,

3. Fuel-air mixture maintained at or above the ignition temperature,
and

4. Furnace volume large enough to give the mixture time for complete

combustion
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Air for Combustion

Air contains 21% oxygen, 78% nitrogen, and 1% other constituents by Volume and 23% and 77% by
weight.

Air required for one ton of Oxygen= 100/23=4.32 tons of air/ton of O2

From Fuel analysis

C+02----CO2: C=38%  =32/12=2.67* 38=tons of O2 per ton of C

Air required to burn carbon completely=  2.67*%4.32*38=438 tons of air/100 tons of fuel
H2 +1/202 --H20: H=2.3% =32/4 =8 tons of O2 per ton of H

Air required to burn Hydrogen completely =8*4.32%2.3=78 tons of air/100 tons of fuel

S + 02-----S02: S=0.2% = 32/32=1tons of O2 per ton of S

Air required to burn Sulfur completely =1%4.32*%0.2=0.8tons of air/100 tons of fuel

Remaining are Ash and Moisture which do not participate in combustion
Nitrogen inert at normal combustion temperatures,unless the temperatures are very high.

Total Air required for complete combustion is 517 tons per 100 tons of fuel(given)
Thumb rule= every ton of fuel=5 tons of air
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Combustion-quality assessment

HEAT HEAT SMOKE
2 ] m
[ Mz Hs0 f__.'_ '|
PERFECT GOOD INCOMPLETE
COMBUSTION COMBUSTION COMBUSTION

C + O —> CO, + 8,084 kcals/kg of Carbon
2C + O —> 2 CO +2.430 kcals/kg of Carbon
2H , + 0, —> 2H,O +28.922 kcals/kg of Hydrogen
S + O, —> SO,  +2.224 kcals/kg of Sulphur

Each kilogram of CO formed means a loss of 5654 kCal of heat (8084 — 2430).

If every molecule of fuel came into contact with the right number of molecules of air, all
the fuel would be combusted .(not practical) - Excess air is required
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How much excess air

Poor mixing

|

Radiation and wall losses

Loss BTU/HR minimum loss

% Oxygen

-«— Air deficiency T Excess air —»

Chemically correct
air-fuel ratio

/ I ] 1 1 1

—20 0 20 40 60 a0
Loss due to Zone of|  Loss due to 9% Excess air
unburned fuel max heat in stack
efficiency
|
,/ 1 b
—40 —20 0 20 40 60
Page 24
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Impacts of poor combustion

High Increase
cO d excess
_ Q2 High
High LOI - NOx
: High
Excessive ng
Attemperation
Reduced
Excessiv o efficienc
&
FEGT — ‘:':’ﬁ' HEHEF
Delayed
Combustion
Local
slagging

Local

COImosion
Local hot

spots

Ref: GE Zonal System
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Reasons for improper combustion

v'Significant quantities of air in-leakage or “tramp” air into the furnace
v'Improper turbulence

v'Improper fuel sizing

v'Inadequate fuel flows

v'Inadequate fuel velocities

v'Improper temperatures

Consequences: significant loss of boiler efficiency, caused by high furnace exit
gas temperatures.
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Areas for Air ingress

Tramp Arr in leakage High furnace exit gas temperatures FCD.I
contribute to high de-superheating

spray water flows that are significant

steam turbine cycle heat-rate penalties.

High furnace exit gas temperatures
contribute to overheated metals, slagging,
excessive sootbiower operation, production
of popcorn ash, fouling of SCR's and Aph's

Tramp air in-leakage
causes heat losses
and auxilary power

Accurate secondary airflow / waste.

measurement and control, , :

contributes to optimum s i

combustion, mnimal NOx and 77 .

reduced de-superheating spray L Y

water

."-"// | —
Ve, = - ——,
i : - —
Y s ‘@ o
Nl ‘.;u . 5 \
/ ¥ :!" -, h @ NS
N 4 A
Yard crusher use Coal pulverizer spilage .
contributes to protecting from pulverizer throats -
pulverizers and coal that are too large
Afr in leakage after the Aph
feeders from tramp Acctrate primary airflow Bottom ash carbon content and contrbutesez wasted D f‘;n
metal and large rocks. h ufiow measurement and bottom ash hopper air in- :
High primary ai s pow er and capacity.

Also increases fineness contribute to control is required for leakage

capabiity of the
pulverizers, for a given
size coal pulvergers,

unnecessarily high dry optimumfurnace

fuel distibution and reduced upper furnace

poor coal fineness exit gas temperatures,
Also, NOx reduction

i R b



Poor combustion cases

Date | Title of Presentation Page 28



steaq

Locations of Air ingress

Large cracks in Bottom Hopper Seal Trough
seal plates and trough connections to hoppers

2 ﬂ_]l =
~~___ = | Ceiling Tubes A R
: N e 8‘ o |

e —~—
‘_\_:“‘—__ T T v
\q\ —_\-::_ ——
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Need for combustion optimisation

Operating a boiler that is not optimised, or tuned, can

v'fallout of pulverised fuel, blocked pipes, or high mill pressure
v’erosion of mill, pipes and burner components

v'poor burner ignition, and flame instability and dislocation
v'incorrect primary and secondary air-to-fuel ratios
v'increased nitrous oxide production

vincreased levels of unburnt carbon

vincreased excess-air requirements

vincreased erosion between furnace and boiler exit

v'reduced boiler efficiency

v'localised furnace problems that can include inappropriate superheater and reheater
temperature profiles,

v’ increased slagging and-greater water-wall wastage. Page 30



What to Optimize?

Fuelline balance
and/or burner

performance issues

Steam Temperatures (High or Low) and/or
High de-superheating spray water flows

System Air In-Leakage

Typical mill perfformance issues

(heavy coalrejects. high primary airflow, poor coal fmeness)

Excessive unbumed carbon in the ash
and/or ESP performance issues

Increased FD & ID fan horsepower levels
(this is oftenrelated to issues with the mputs and/or
mcreased system air in-leakage)
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1600 4.0
[
: Boiler efficiency
1 i
1400 | /—\ / 3.5
| /
| /
|/ f
/!
/| N
1200 / / \ 3.0
1000 CcO 0, 25
800 2.0
600 1.5
400 \ 1.0
N r
200 0.5
CO control range
0 0

— % Excess air
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Methods for Combustion optimization

e Diagnostic testing

e Sensor based

e Online Optimization

e Modeling based approach for combustion control

e Control loop tuning
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Diagnostic testing
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Diagnostic tests

Clean Airflow Tests
Dirty Airflow Tests
Iso kinetic Coal Sampling
Furnace Exit HVT Traverse
Air In-Leakage survey
Insulation survey
Furnace temperature survey
Flue Gas Flow Measurement
Boiler Efficiency Tests
AH Performance Tests
Boiler Tuning & Optimization
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Combustion optimization based on

Diagnostic testing

The fuel lines balanced to each burner
by

* clean air test + 2%or better; Flue Gas
«dirty air’ test, + 5% or better;
*balanced in fuel flow to * 10 %or
better.

For carbon burnout control :
coal fineness to be

Air

Outlet

Air
Inlet

Primary
Airflow
(15%-20%

Over-fire Air
( |5-2()"/o) F— e

Secondary Air .
(55‘310.()?", ;) —-

*75 %0r more passing a 200 mesh.
*50 mesh particles shall be <0.1%.

e Secondary air distribution to burners
should be within £5-10 %.

e primary and secondary airflow shall
be accurately measured and controlled
to * 3%accuracy
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Sensor based diagnostic and optimization
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CO2 sensing as combustion control

Rate of change of CO2is rather small at the point of
optimum excess air.

Combustibles T % in flue gas
(fuel)

Excess air at complete
CO, combustion

In fact, the CO2 curve is at its maximum point when
the combustion process is optimized.

CO2 is not a very sensitive measurement.

<

-=+— Excess fuel 0  Excessair —=
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02 sensing as combustion control

Combustibles T % in flue gas

(fuel) .
F Excess air at l:omplete

A CO, combustion

Excess O2: zirconium oxide probes.

It uses the probe should be installed close to the
combustion Zone,

the gas temperature is below that of the electrically —— Excossfudl | 0 Excessair—»
heated zirconium oxide detector.

The flow should be turbulent L
/" %\\‘\
probe cannot distinguish leakage from excess oxygen ' P
~ ~
left over after combustion.
arelatively insensitive measurement. Sk _

Probe with
shield assembly

] ) Adapter plate
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CO as combustion control

CO is a direct measure of the completeness of combustion,

unaffected by air infiltration,

Combustibles T % in flue gas

(fuel) .
Excess air at complete

* CO, combustion

optimum boiler efficiency :when the losses due to
incomplete combustion equal the effects of excess air heat
loss.

Theoretically, CO should be zero whenever there is oxygen

in the flue gas. =—— Excess fuel 0  Excessair —»

Maximum boiler efficiency when the CO is between 100
and 400 ppm.

CO is a very sensitive indicator of improperly adjusted
burners;

The CO analyzers cannot operate at high temperatures
usually located downstream of the economizer.
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Sensor based approach

G D=ermrmestal Servizer

ZOMAL Topologm Oy H R
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IOMAL EXCESS OXWGEN %

0 @. cations

FONAL COMBUSTIBLES FRM

CO, ppm

-_ [ 10 - B = e
gjﬂiﬂf CombGad | Twes |m--o-l Opwsten 2 | i Gam S

L b 1.7

Engfaiap | | EmoSelen?
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Acoustic Pyrometer for flue gas exit

temperature

Principle:

velocity of sound varies with temperature.
Changes in sound speed can provide
temperature of the medium

C=VIRT

30

g
~..
—.
gy
..
TS,

32 A

.
~—.
..
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2800
(1538) FEGT's SHOULD NEVER BE IN THIS RANGE, TO DO
2600 SO INVITES SERIOUS SLAGGING AND FOULING

(1427)

2400
(1316)

2200 |
(1204)

2000
(1093)

1800 |

Furnace Exit Gas Temperature, F (C)

(982)
1600 | -
@71 | -« Typical Large Utility Boiler Furnace
1400 { Heat Release Rate
; 5
(760) — s
iy  PEPEPEPENENE.
0 20 60 100 140 180 220
(-18) (83) (189) (315) (442) (568) (694)

Heat Release Rate, 1000 Btu/h ft? (Kw/m?)

Acoustic waves are strongly attenuated by
hot gases;

a controlled high intensity sound source is
required.

Robust signal detection techniques must
be employed to achieve precise and
accurate time-of-flight measurements
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Combustion control through online optimization-PADO
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Online combustion optimization
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Process overview
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Ash [Z] 366
Yolatile matter [%] 225
Fixed carbon [%] 258
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Set point optimization

~4Evonik Energy Services - Jharsuguda_U1 - [Set]
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[Set Point Optimization | | Mill Recommendations |
Boiler | | Status |
Current Optimized imi
Act value Opt value B Currant gpiimized
02 at Eco outlet 343 %l MILL F mm | B Uh
e . : MILL E [ 1 Jieil 1 | [ &Tth ] [ Sth |
[ 283 | [ 284 | MILL D ] [ 7#th | [ th ]
MILL C [ ] [ &@th ] [ &@2th |
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[ Turbine Cycle |
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Combustion optimization with CFD modeling
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CFD model development

SH inlet RH-Front inlet RH-Rear outlet

Furnace exit
»

. 1300.00

1235.00
1170.00
1105.00
1040.00 Burner zone

. 975.00

910.00

RN A A 4
:

845.00

780.00
I 715.00
650.00

\
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Oxygen and CO profiles in the furnace

CO profile at Combustion zone wall

003 0004 0005 0006 0007 0008

0.1M cell model

4

O, profile at Combustion zone wall
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Effects of coal quality on combustion

Results:
« Coal quality variation

Desi Bet Coal

« Coal quality vari

60pm Uniform 70um Uniform 75pum Uniform Risin-Rammler
Distribution Distribution Distribution Distribution

7/5/2010 | CFD Modeling of 500 MW Tangential Coal Fired Boiler
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Effects of burner tilt on combustion

Results:
 Coal mill variation

Middle 6 mills Bottom 6 mills

Burner Tilt =0 Burner Tilt = +15 Burner Tilt = +30
Degree Degree Degree

7/5/2010 | CFD Modeling of 500 MW Tangential Coal Fired Boiler
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Effects of biased coal flow

Results:

* Coal flow biasing for making uniform temperature distribution in
reheater

15% flow bias 15% flow bias 10% flow bias in corner
in corner 2&4 in corner 1&3 1&3
15% flow bias in corner
284
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Advance models for combustion optimization
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Advance techniques for optimisation

Tools

e Soft Techniques: CFD, Artificial Neural Networks, A mathematical modelling
developed by using CFD technique, calculates zone wise temperatures,
Oxygen and CO, which is applied for controlling the O2 etc

Techniques
e (Conventional techniques: coal velocity measurement, air leaks control

e Mathematical operations developed by using Artificial Neutral Networks are
used for learning the behavior of the boiler/plant like variation of O2 in one
corner and its effect on SH/RH spray etc.

e Development of advance controls through mathematical models

. , a subsidiary of Steag Energy, Germany involved in Combustion
Optimisation techniques.
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Combustion Optimization through control modifications

A case study

Date | Title of Presentation Page 54



steag

Problem definition

Furnace had right and left temperature imbalance .

This phenomenon is noticed in three main parameters

v'Flue gas temperature between right and left at Reheater outlet
v'Oxygen difference between right and left at economizer outlet.

v'"Main steam and re-heater spray difference between right and left
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Process Parameters

Parameter Right Hand Left Hand Difference
Side Side

5.8 4.8 7.8 0.17 3.1

1. Oxygen content (%) 2.2

2. Re-Heater flue gas 651 740 624 795 -35 107
inlet temperature( Q)

3. Super Heater 0 2013  12.0 24.2  -7.7 21.2
Spray(kg/sec)

4. Re-Heater 17.3 26.2 6.8 26.2 -19.3 5.3

Spray(kg/sec)
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Analysis of parameters

*SADC dampers corner wise opening
*Coal flow of a mill
*Burner Tilt corner wise

O 1) ke % (v2)
1000000 8.0
900000 _| | 7.4
800000 _| | 68
To0000 _| | 62
600000 _{ 56

200007 W ="
UL.'LH_ A
400000 _| |l 44

300000 _{ | 38
200000 _{ [ 32
100000 _| L 28
g T T T T T T T T T T T T T T T T T T T T T T T 20
12:00:00 AN 2:00:00 AWM 4:00:00 AM 6:00:00 AM B8:00:00 AN 10:00:00 AN 12:00:00 PM 2:00:00 PM 4:00:00 PM 6:00:00 PM B8:00:00 PM 10:00:00 PK 12:00:00 AN
411112012 4122012
UNM_M_PEL_GRS_G Real power - checked valug 420371 KW o BOIL_M_O2W_FG_R_AVG_G AH-B FLUE GAS OXY'GEN DEVIATION 578182 % r2)
BOIL_WM_02W_FG_L_AWG_G AH- A FLUE GAS 0XY'GEN DEVIATION 784219 % (¥2)

check the plausibility of the solution a manual
test on SADC dampers was carried out
Results were successful
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Solution

CLOSE LOOP COMBUSTION TO ADAPT
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Closed loop combustion optimisation

Steps in a closed loop combustion optimization

1. Communication: to communicate with a DCS, MODBUS (TCP/IP)
2. Control modification: different control loops Biasing the set point

3. Exploration: A process of generating a step tests to create a learning set for data
driven models (Neural Nets, Auto regression models, etc.,)

4. Defining the. Right and left imbalance is the objective
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Combustion control

From Pressure
Controller
Fuel Flow Firing Rate Air Flow

Demand

T 'S
o =
< —_> <3 | [ 10
Y ey
> A A [*
K| | K| |
X X

f(x) ()

Combustion controls have two purposes:

=

(1) maintain constant steam conditions under varying loads by adjusting fuel flow,

(2) maintain an appropriate combustion air-to-fuel flow
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Control Modification (actual loop)
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