Combustion optimization in PF Boilers

Mr. K.Bhanu Prakash Date: XX.XX.2013

- 1. Coal and Combustion process
- 2. Boiler losses and efficiency
- 3. Combustion measurement and optimization
- 4. Online diagnostic optimization
- 5. Advance Optimization techniques

Coal and its analysis

 different coal types: (Peat) Lignite
 Bituminous coal
 Anthracite

- Inhomogeneous organic fuel formed mainly from decomposed plant matter.
- Over 1200 coals have been classified.

Coal Analysis

Elemental Composition

С	65-95%
Η	2-7%
0	<25%
S	<10%
N	1-2%
Char	20-70%
Ash	5-15%
H ₂ O	2-20%
VM	20-45%

Proximate analysis:

Determination of TM, FC, VM, Ash content and heat value

Used for characterizing the coal for its use

Ultimate analysis: Elemental analysis of carbon, Hydrogen, Nitrogen, Sulfur and other elements contained in fuel

It is derived from the proximate analysis of coal

Used in determining the quantity of air required for combustion and the volume and composition of the combustion gases for furnace design

Proximate to Ultimate analysis

		1						
	%C	=	0.97C + 0.7(VM - 0.1A) - M(0.6 - 0.01M)					
	%H	=	$0.036C \pm 0.086$ (V	$0.036C + 0.086$ (VM - 0.1xA) - $0.0035M^2$ (1-0.02M)				
	/011		0.0500 + 0.000 (V	WI -0.1XA) - 0.00	(1-0.021vi)			
	$%N_2$	=	2.10 -0.020 VM					
where								
	С	=	% of fixed carbon					
		=						
	A		70 01 asii	% of ash				
	VM	=	% of volatile matter					
	Μ	=	% of moisture	% of moisture				
· [Parame	ter	Indian Coal	Indonesian	South			
			Coal African Coal					
ľ	Moisture	e	5.98 9.43 8.5					
ľ	Ash		38.63 13.99 17					
ľ	Volatile	matt	er 20.70 29.79 23.28					
	Fixed Ca	arbon	a 34.69					

HHV: Higher heating value: the heat of vaporization of the water is released and becomes part of the heating value.

Lower heating value, LHV : heating value in which the water remains a vapor and does not yield its heat of vaporization.

Thus the energy difference between the two values is due to the heat of vaporization of water,

HHV = LHV + hfg

Coal rank Indian and Imported

Grade	Calorific Value Range			
	(in kCal/kg)			
А	Exceeding 6200			
В	5600 - 6200			
С	4940 - 5600			
D	4200 - 4940			
Е	3360 - 4200			
F	2400 - 3360			
G	1300 - 2400			

Table 1.4 GCV for Various Coals					
Parameter	Lignite Indian Coal Indonesian Coal South African Coal				
	(Dry Basis)				
GCV (kcal/kg)	4,500*	4,000	5,500	6,000	

	Bituminous	Bituminous	Indonesian Coal
	Coal (Sample I)	Coal	
		(Sample II)	
Moisture (%)	5.98	4.39	9.43
Mineral matter (%)	38.63	47.86	13.99
Carbon (%)	42.11	36.22	58.96
Hydrogen (%)	2.76	2.64	4.16
Nitrogen (%)	1.22	1.09	1.02
Sulphur (%)	0.41	0.55	0.56
Oxygen (%)	9.89	7.25	11.88
GCV (Kcal/kg)	4000	3500	5500

Indian and imported coals

Parameter	Indian Coal	Indonesian Coal	South African Coal
Moisture	5.98	9.43	8.5
Ash	38.63	13.99	17
Volatile matter	20.70	29.79	23.28
Fixed Carbon	34.69	46.79	51.22

Fixed carbon:

Solid fuel left after volatile matter is distilled off. It consists of mostly carbon. •Gives a rough estimate of heating value of coal

Volatile Matter:

It is an index of the gaseous fuels present.

Volatile Matter

- •Proportionately increases flame length, and helps in easier ignition of coal.
- •Sets minimum limit on the furnace height and volume.
- •Influences secondary air requirement and distribution aspects.
- •Influences secondary oil support

Significance of Various Parameters in Proximate Analysis

Ash Content:

Ash is an impurity that will not burn.
Reduces handling and burning capacity.
Increases handling costs.
Affects combustion efficiency and boiler efficiency
Causes clinkering and slagging.

Moisture Content:

Moisture in coal must be transported, handled and stored. Since it replaces combustible matter, it decreases the heat content per kg of coal.

•Increases heat loss, due to evaporation and superheating of vapour

steag

Typical analysis of Indian coal

SI				-	95% coal plies	Range of 5% coal supplies
No.	Characteristics		Column-1 Design Coal	Column-2 Worst Coal	Column-3 Best Coal	Column-4
1.0	Proximate Analysis (As received basis)					
1.1	Total Moisture	(%)	14	15	12	10-17
1.2	Ash	(%)	40	46	32	30 - 50
1.3	Volatile Matter	(%)	22	19	24	24 - 17
1,4	Fixed Carbon	(%)	24	20	32	34 - 16
2.0	Ultimate Analysis (As received basis)					
2.1	Carbon	(%)	35	29.0	42	45.0 - 26.5
2.2	Hydrogen	(%)	2.3	1.88	3	3.50 - 1.75
2.3	Nitrogen	(%)	0.83	0.52	1	1.25 - 0.6
2.4	Oxygen	(%)	7.24	6.96	9.23	10.0 - 5:0
2.5	Sulphur	(%)	0.28	0.25	0.34	0.22 - 0.8
2.6	Carbonates	(%)	0.3	0.35	0.27	0.42 - 0.2
2.7	Phosphorous	(%)	0.05	0.04	0.06	0.07 - 0.03
2.8	Total Moisture	(%)	14	15	12	10 - 17
2.9	Ash	(%)	40	46	32	30 - 50
2.10	GCV (Kcal/Kg)	(%)	3300	2800	4200	4500 - 2600
2.11	Hard Grove Index		55	53	58	45 - 60
3.0	Ash Analysis			Range of 9	5% supplies	
3.1	Silica (SiO ₂)	(%)	59.5	61.2	- 60.2	59.0 - 62
3.2	Alumina (Al ₂ O ₃)		29.63	30	- 29	27.5 - 31.5
3.3	Iron Oxide (Fe ₂ O ₃)	(%)	4.32	4.1	- 4.42	3.8 - 5.20
3.4	Titania (TiO ₂)	(%)	1.72	1.60	- 1.75	1.5 - 1.8
3.5	Phosphoric Anhydride	(%)	1.57	0.51	- 0.61	0.48 - 0.7
3.6	Lime (CaO)	(%)	1.53	1.50	- 1.62	1.46 - 1.82
3.7	Magnesia (MgO)	(%)	0.57	0.50	- 0.70	0.4 - 0.8
3.8	Sulphuric Anhydride	(%)	0.28	0.25	- 0.29	0.22 - 0.4
3.9	Alkalies (Na ₂ O+K ₂ O)	(%)	00.88		-	0.6 - 1.93
4.0	Ash Fusion Range					
4.1	Initial Deformation Ten	np.°C	1100	1100	- 1200	>1050
4.2	Hemispherical Temp.	°C	>1400			>1450
4.3	Flow Temp.	°C	>1450			>1450

Boiler Losses and efficiency

Dry gas loss: sensible heat carried out of the stack [5-6%] **Moisture loss:** loss due to vaporizing the moisture in the fuel [2%] **Incomplete combustion loss:** loss due to combustion of carbon that results in carbon monoxide (CO), instead of, carbon dioxide (CO₂) [0.2-0.5%] [4%] **Hydrogen Loss:** Hydrogen in the fuel converts to H₂O **Unburned carbon loss:** loss due to carbon that does not get combusted and ends up in the refuse (ash) [1%] **Moisture in the combustion air loss:** loss due to heating up water vapor contained in the combustion air [0.2-0.25%] **Radiation loss**: heat lost from the external furnace walls to the surrounding air [1%] **Total losses** [13-15%]

steag

Boiler Losses efficiency

	UNITS	500 MW	400MW	300MW	250MW
LOAD	t/h	1498.5	1198.9	909.3	772.9
Evaporation		1490.5		uarantee Co	
Fuel	1			uarantee Co 300	ai
Higher Heating value	Kcal/Kg			3	
Ambient Temperature	Deg.C	····-			
Relative Humidity	%			60	
Air moisture	Kg/kg of		0.0	006	
	dry air		-		
Excess Air at AH inlet	%	445	113	20	111
Gas temperature leaving AH	Deg.C	115	113	112	111
(corrected)					T
Heat losses and Efficiency	~				
 Heat losses due to flue 	%				
gases		4.25	4.22	4.26	4.28
- Dry gas loss					
- Hydrogen in Fuel		3.96	3.95 2.29	3.95 2.29	3.95
- Moisture in Fuel		2.29			2.29
- Moisture in air		0.04	0.04	0.04	0.04
- Total heat loss due to		40.54		40.54	
flue gases		10.54	10.50	10.54	10.56
** Heatless due to unbound	0/				
ii) Heat loss due to unburnt	%				
carbon in					
- Furnace bottom ash }		1.20	1.20	1.20	1.20
- Total heat loss due to	· ·	1,20	1.20	1.20	1.20
unburnt carbon		1.20	1.20	1.20	1.20
		1.20	1.20	1.20	1.20
iii) Sensible heat loss in	%	· · · •			
- Furnace bottom ash		0.416	0.416	0.416	0.416
- Economiser hopper		0.033	0.031	0.029	0.027
- Air heater hopper		0.006	0.006	0.006	0.006
- ESP hopper		0.142	0.139	0.138	0.136
- Total sensible heat loss		0.597	0.592	0.589	0.585
iv) Heat loss due to radiation	%	0.115	0.139	0.177	0.206
v) Manufacturer's margin	%	0.100	0.100	0.100	0.100
vi) Unaccounted heat loss	%				
- Bottom radiation		0.098	0.101	0.105	0.107
 Mill reject + co 		0.080	0.080	0.080	0.080
-					
Total unaccounted heat loss		0.178	0.181	0.185	0.187
· · · · ·					
vii) Totatheat losses	%	12.73	12.71	12.79	12.84
(sum of Sl.nos. (i) to (vi))					
vii) Heat credits	%	Not accounted as not permitted by			
		specification			
		2			
viii) Steam generator efficiency	%	87.27	87.29	87.21	87.16

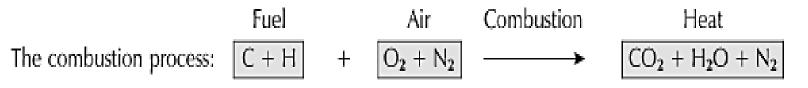
Cost of losses

Parameter	Deviation	Effect on Heat Rate
Excess Air (O2)	per %	7.4 Kcal/kWh
Exit Gas Temp	per °C	1.2 Kcal/kWh
Unburnt Carbon	per %	10-15 Kcal/kWh
Coal moisture	per %	2-3 Kcal/kWh
Boiler Efficiency	per %	25 Kcal/kWh

1 kcal reduction ~ 1.2 & 3 T/day saving in coal in 200/500 MW units @ 90% PLF & 3600 GCV; CO₂ reduction ~ almost 1.25 times coal saved

Operator Controllable Losses – Dry Flue Gas & Unburnt Carbon Loss

Combustion- a brief discussion


Combustion

Coal is a hydrocarbon with CHNOS as main elements

Fuel + Oxidizer ---Products of combustion + Energy

Primary combustion reaction

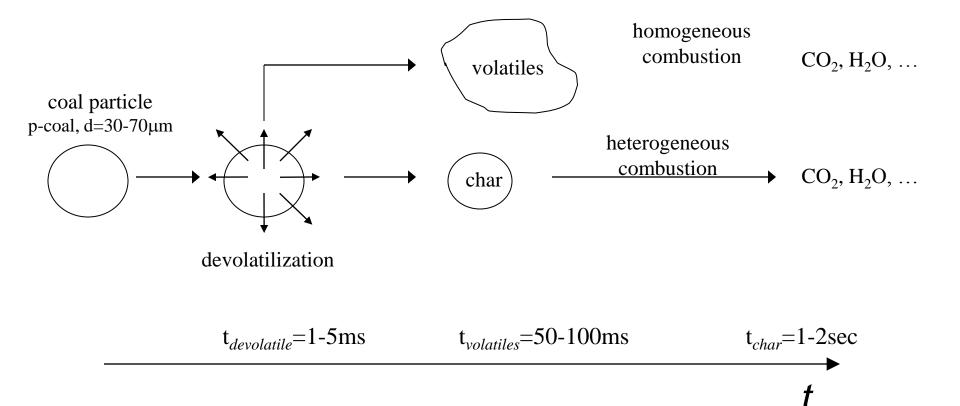
Secondary combustion products :

NOx and Sox (ppm):

NOx, SOx, CO and unburnt fuel

air pollutants.

CO and unburnt fuel:


a waste of available heat ,loss of efficiency

Combustion efficiency:

[Heat In Fuel-Heat carried away by flue gas from the stack]/[Heat in the fuel]

Process of coal combustion

- Turbulent/swirling flow of air and coal.
- Turbulent/convective/molecular diffusion of gaseous reactants and products.
- Convective heat transfer through the gas and between the gas and coal particles.
- Radiatiion heat transfer between the gas and coal particles and between the coal/air mixture and the furnace walls

four basic criteria :

- 1. Adequate quantity of air (oxygen) supplied to the fuel,
- 2. Oxygen and fuel thoroughly mixed,
- 3. Fuel-air mixture maintained at or above the ignition temperature, and
- 4. Furnace volume large enough to give the mixture time for complete combustion

Air for Combustion

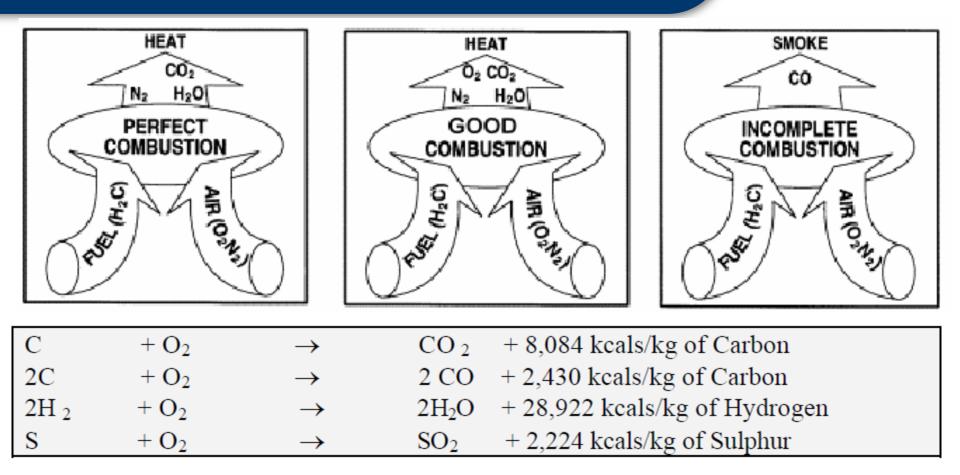
<u>steag</u>

Air contains **21% oxygen, 78% nitrogen,** and 1% other constituents by Volume and 23% and 77% by weight.

Air required for one ton of Oxygen= 100/23=**4.32** tons of air/ton of O2

From Fuel analysis

C + O2 ---- CO2:C=38% $=32/12=2.67^* 38= \text{tons of O2 per ton of C}$ Air required to burn carbon completely= $2.67^*4.32^*38=438$ tons of air/100 tons of fuelH2 + 1/2O2 ---H2O:H=2.3% = 32/4 = 8 tons of O2 per ton of HAir required to burn Hydrogen completely $=8^*4.32^*2.3=78$ tons of air/100 tons of fuelS + O2----SO2:S=0.2% = 32/32=1 tons of O2 per ton of SAir required to burn Sulfur completely $=1^*4.32^*0.2=0.8 \text{ tons of air/100 tons of fuel}$

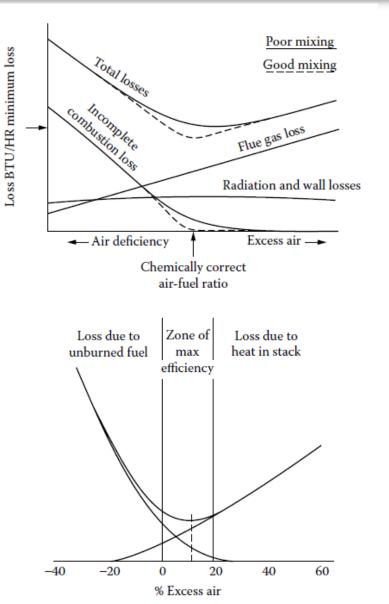

Remaining are Ash and Moisture which do not participate in combustion Nitrogen inert at normal combustion temperatures, unless the temperatures are very high.

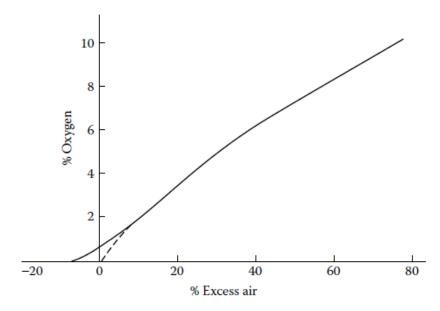
Total Air required for complete combustion is 517 tons per 100 tons of fuel(given) **Thumb rule= every ton of fuel=5 tons of air** Date Little of Presentation

Page 22

steag

Combustion-quality assessment

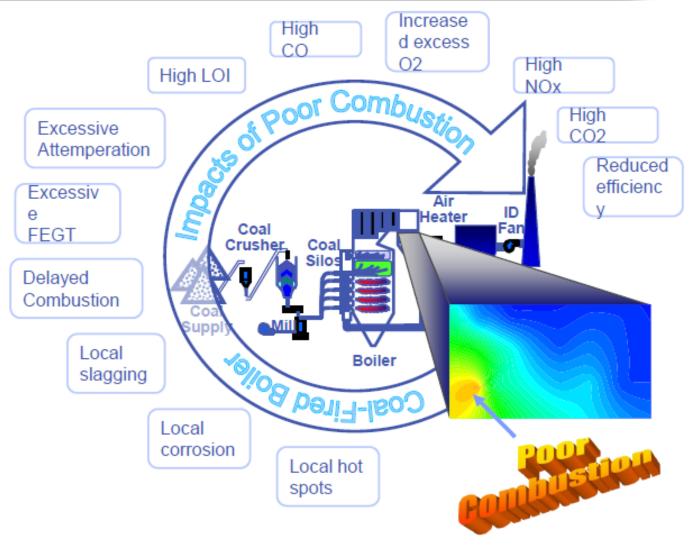

Each kilogram of CO formed means a loss of 5654 kCal of heat (8084 - 2430).


If every molecule of fuel came into contact with the right number of molecules of air, all the fuel would be combusted .(not practical) – Excess air is required

Date | Title of Presentation

How much excess air

steag

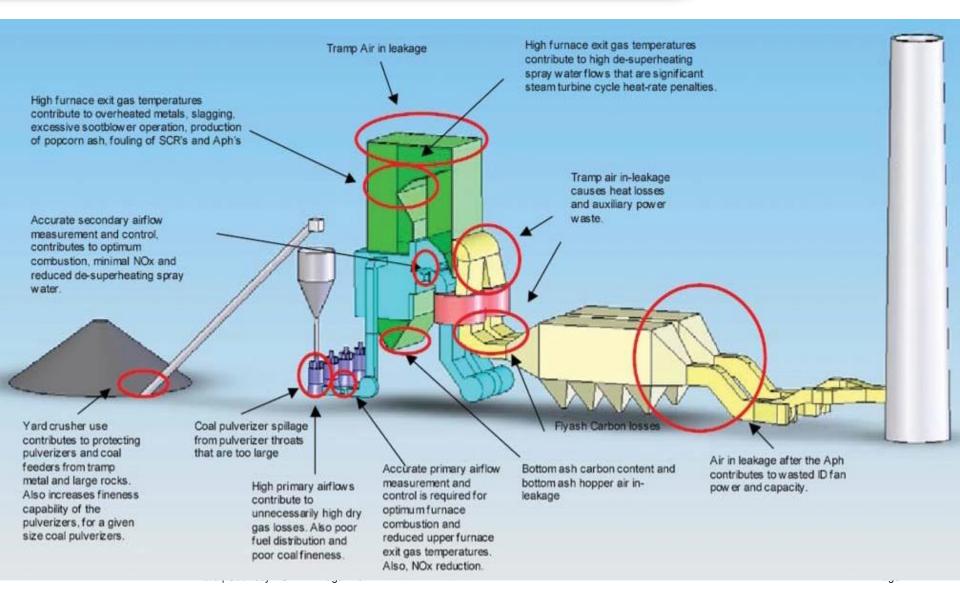


Page 24

Impacts of poor combustion

steag

Ref: GE Zonal System



- ✓ Significant quantities of air in-leakage or "tramp" air into the furnace
- ✓ Improper turbulence
- ✓ Improper fuel sizing
- ✓ Inadequate fuel flows
- ✓Inadequate fuel velocities
- ✓ Improper temperatures

Consequences: significant loss of boiler efficiency, caused by high furnace exit gas temperatures.

Areas for Air ingress

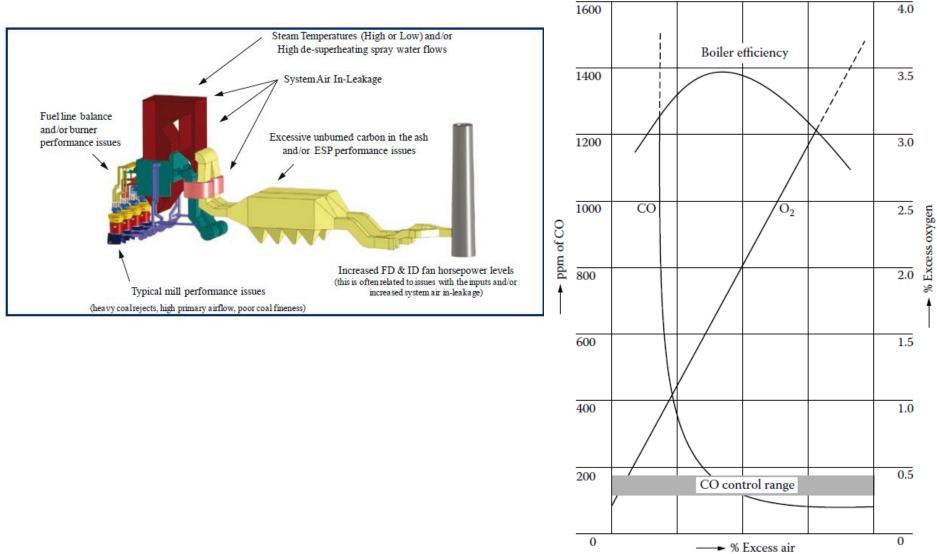
steag

Poor combustion cases

steag

Locations of Air ingress

Large cracks in Bottom Hopper Seal Trough seal plates and trough connections to hoppers



Operating a boiler that is not optimised, or tuned, can

- ✓ fallout of pulverised fuel, blocked pipes, or high mill pressure
- \checkmark erosion of mill, pipes and burner components
- \checkmark poor burner ignition, and flame instability and dislocation
- \checkmark incorrect primary and secondary air-to-fuel ratios
- ✓ increased nitrous oxide production
- ✓ increased levels of unburnt carbon
- ✓ increased excess-air requirements
- \checkmark increased erosion between furnace and boiler exit
- ✓ reduced boiler efficiency
- ✓ localised furnace problems that can include inappropriate superheater and reheater temperature profiles,
- \checkmark increased slagging and greater water-wall wastage.

What to Optimize?

steag

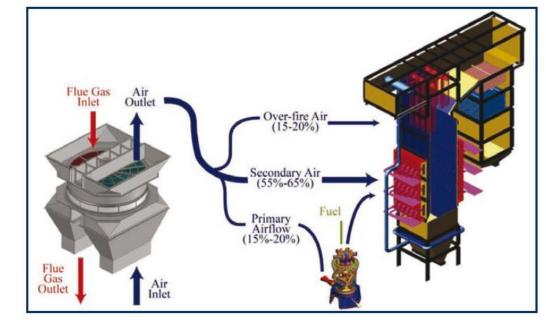
- Diagnostic testing
- Sensor based
- Online Optimization
- Modeling based approach for combustion control
- Control loop tuning

Diagnostic testing

steag

Diagnostic tests

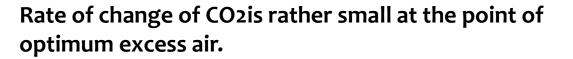
Clean Airflow Tests Dirty Airflow Tests Iso kinetic Coal Sampling Furnace Exit HVT Traverse Air In-Leakage survey Insulation survey Furnace temperature survey Flue Gas Flow Measurement Boiler Efficiency Tests AH Performance Tests Boiler Tuning & Optimization


Combustion optimization based on Diagnostic testing

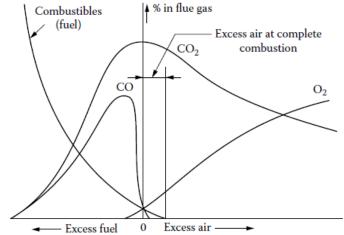
- The fuel lines balanced to each burner by
- clean air test ± 2% or better;
 dirty air' test, ± 5% or better;
 balanced in fuel flow to ± 10 % or better.

For carbon burnout control : coal fineness to be

•75 %or more passing a 200 mesh.•50 mesh particles shall be <0.1%.


- Secondary air distribution to burners should be within ±5-10 %.
- primary and secondary airflow shall be accurately measured and controlled to ± 3%accuracy

steag



Sensor based diagnostic and optimization

In fact, the CO₂ curve is at its maximum point when the combustion process is optimized.

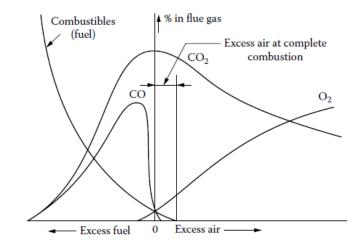
CO₂ is not a very sensitive measurement.

steag

O2 sensing as combustion control

steag

Excess O2: zirconium oxide probes.


It uses the probe should be installed close to the combustion Zone ,

the gas temperature is below that of the electrically heated zirconium oxide detector.

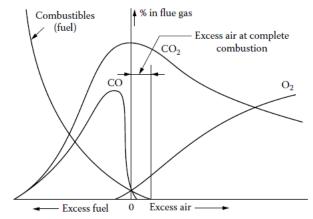
The flow should be turbulent

probe cannot distinguish leakage from excess oxygen left over after combustion.

a relatively insensitive measurement.

CO is a direct measure of the completeness of combustion,

unaffected by air infiltration,

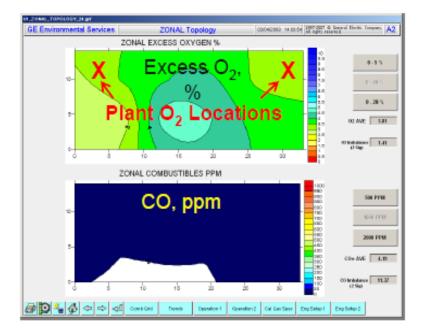

optimum boiler efficiency :when the losses due to incomplete combustion *equal the effects of* excess air heat loss.

Theoretically, CO should be zero whenever there is oxygen in the flue gas.

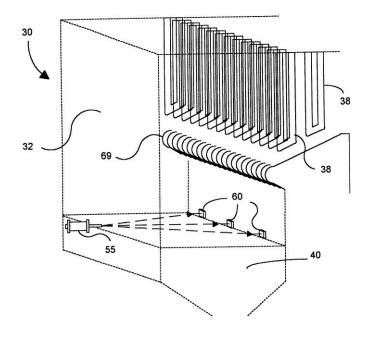
Maximum boiler efficiency when the CO is between 100 and 400 ppm.

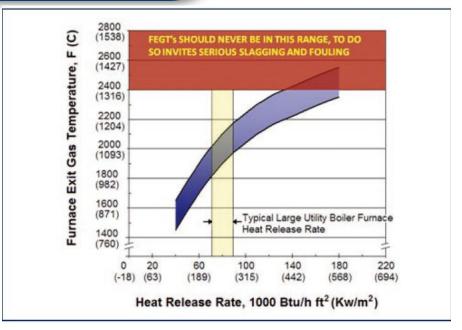
CO is a very sensitive indicator of improperly adjusted burners;

The CO analyzers cannot operate at high temperatures usually located downstream of the economizer.



Sensor based approach


Acoustic Pyrometer for flue gas exit temperature


steag

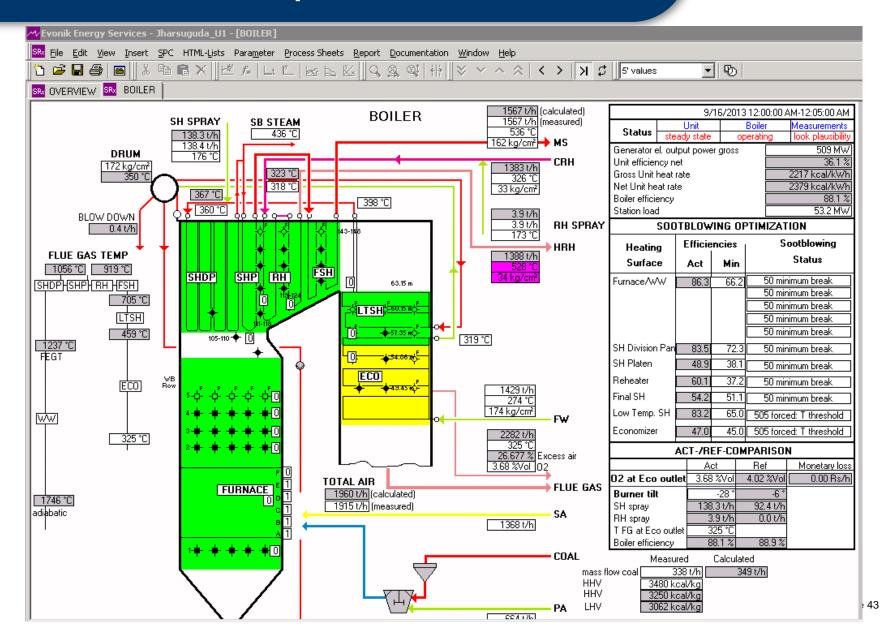
Principle:

velocity of sound varies with temperature. Changes in sound speed can provide temperature of the medium

C=√rRT

Acoustic waves are strongly attenuated by hot gases;

a controlled high intensity sound source is required.

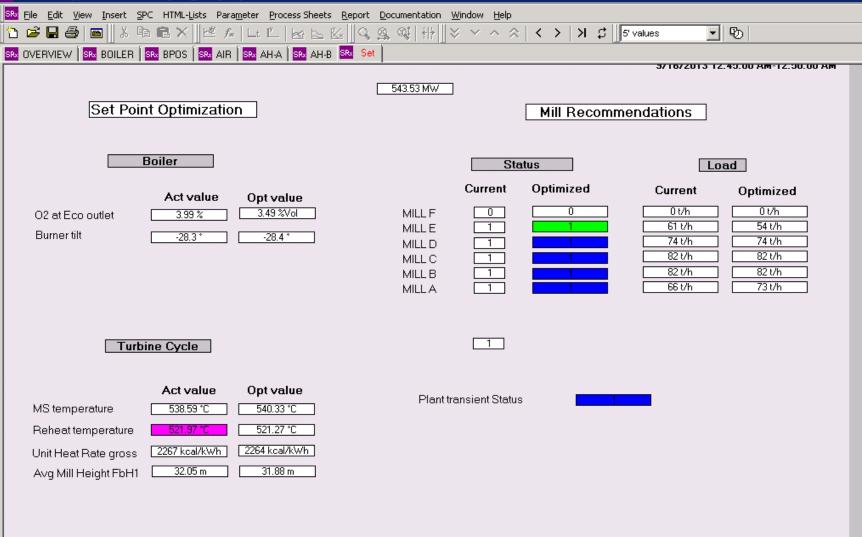

Robust signal detection techniques must be employed to achieve precise and accurate time-of-flight measurements

Combustion control through online optimization-PADO

steag

Online combustion optimization

Process overview

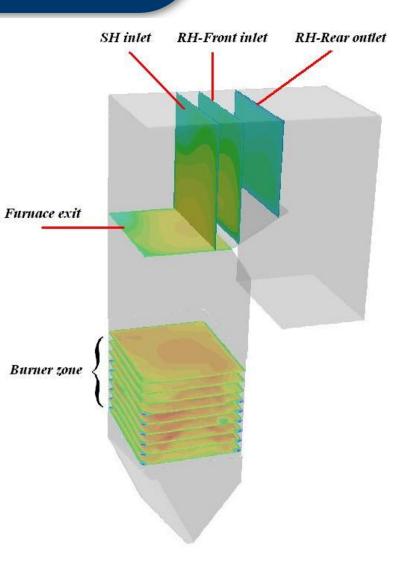


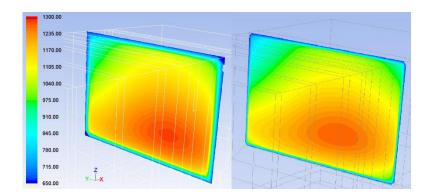
				cess Sheets <u>R</u> ep							
			∬≈ Lt Ľ		C 3 04	#?∥∛	$\vee \land \otimes \checkmark$	> X C Is' values	• D		
N OVERVIEW	SRX BOILER	🛛 BPOS 📔									
BPOS Backward Calculation Screen 9/16/2013 12:00:00 AM-12:05:00 AM											
Π	Load [MW]	509						Ambient air temperature [•C] 27]		
	MS flow [t/h]	1 1567						Relative humidity [%]			
	MS temp [*C]	536						Flue gas oxygen at Eco o			
	RH temp [*C]	528						Flue gas oxygen at AH ou			
								Burner tilt [*]	-28		
								Mills in operation	A on		
Boiler Thermal Performance Data									B on C on		
		Flue gas temp		Fluid tempera		Fouling	Zonal heat	Maximum Metal	C on D on		
	Section	Inlet	Outlet	Inlet	Outlet	factor		Temperature [*C]	E on		
	Waterwalls	1746	1237	350	350	0.86	439		F off		
	Div.Panel SH	1237	1056	367	436	0.83	151				
	Platen SH	1056	919	436	536	0.49	100	596 °C			
	Reheater	919	705	323 502	528 537	0.60	182				
	Final S.H.	705	653 459	350	398	0.54	42	575 °C			
	Economiser	459	325	274	319	0.63	97				
	Air heater	325	131	2/4	515	0.47	126				
Ľ						0.00					
				Coal analysis		Calculated		Heat balance	Act	Ref	
Coal mass flow [t/h]		338	GCV [kcal/kg]		3250.00		Boiler efficiency [%]	88.14	88.91		
	Bottom ash rem		20	Ultimate						0.001	
	Duct ash remov			Carbon [%]		35.0		Dry gas [%] H20 in fuel [%]	4.71	3.86	
	AH ash removal		3	Hydrogen [%]		1.9		H20 from H2 in fuel [%]	3.27	2.26	
	Fly ash removal	rate [%]	72	Nitrogen [%]		1.7		H2O in air [%]		0.15	
Ľ	UBC in ash [%]		0.2	Oxygen [%]		7.6		UBC [%]	0.23	0.74	
				Sulphur [%]	841	0.4		Radiation [%]	0.11	0.22	
				Total moisture [<u>%</u>	15.2		Others [%]	0.68	0.30	
				Ash [%] Proximate		38.3		Total losses [%]	11.98	11.09	
				Proximate Total moisture	91	15.0				11.00	
				Ash [%]	~	36.6					
				Volatile matter	[2]	22.5					
				Fixed carbon [%		25.8					

steag

Set point optimization

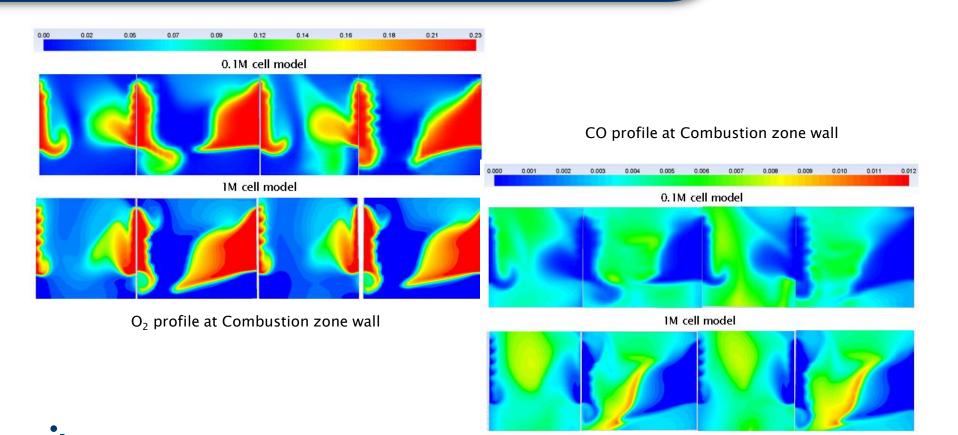
🚧 Evonik Energy Services - Jharsuguda_U1 - [Set]


Optimized load is more than actual load Optimized load is less than actual load



Combustion optimization with CFD modeling

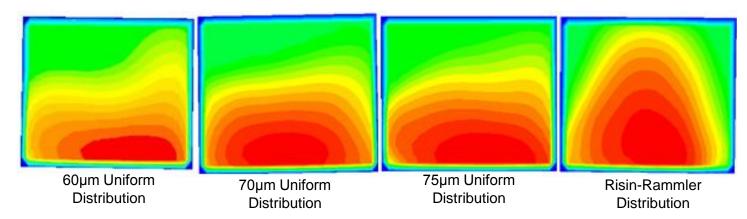
CFD model development


steag

Oxygen and CO profiles in the furnace

7/5/2010 | CFD Modeling of 500 MW Tangential Coal Fired Boiler

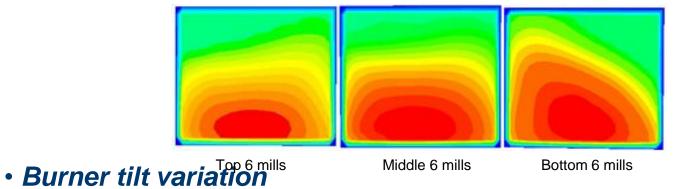
Effects of coal quality on combustion

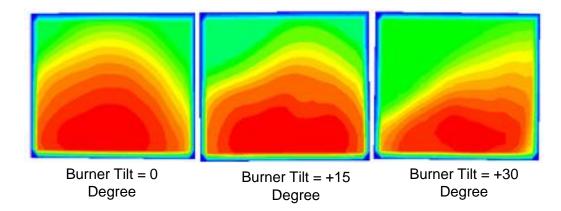


Results:

Coal quality variation

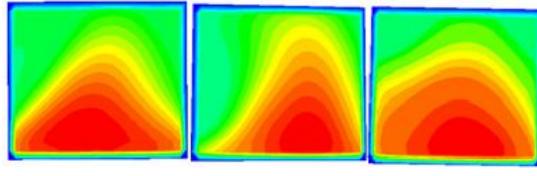
Coal quality variation




Effects of burner tilt on combustion

Results:

Coal mill variation



Results:

Coal flow biasing for making uniform temperature distribution in

reheater

15% flow bias in corner 2&4

15% flow bias in corner 1&3

10% flow bias in corner 1&3

15% flow bias in corner 2&4

Advance models for combustion optimization

Tools

• Soft Techniques: CFD, Artificial Neural Networks, A mathematical modelling developed by using CFD technique, calculates zone wise temperatures, Oxygen and CO, which is applied for controlling the O2 etc

Techniques

- Conventional techniques: coal velocity measurement, air leaks control
- Mathematical operations developed by using Artificial Neutral Networks are used for **learning the behavior** of the boiler/plant like variation of O₂ in one corner and its effect on SH/RH spray etc.
- Development of **advance controls** through mathematical models
- <u>www.powitec.de</u>, a subsidiary of Steag Energy, Germany involved in Combustion Optimisation techniques.

Combustion Optimization through control modifications A case study

Furnace had right and left temperature imbalance.

This phenomenon is noticed in three main parameters


- ✓ Flue gas temperature between right and left at Reheater outlet
- \checkmark Oxygen difference between right and left at economizer outlet.
- \checkmark Main steam and re-heater spray difference between right and left

Si.No	Parameter	Right Hand Side		Left Hand Side		Difference	
		min	max	min	max	min	max
1.	Oxygen content (%)	2.2	5.8	4.8	7.8	0.17	3.1
2.	Re-Heater flue gas inlet temperature(C)	651	740	624	795	-35	107
3.	Super Heater Spray(kg/sec)	0	20.13	12.0	24.2	-7.7	21.2
4.	Re-Heater Spray(kg/sec)	17.3	26.2	6.8	26.2	-19.3	5.3

Analysis of parameters

- •SADC dampers corner wise opening •Coal flow of a mill
- •Burner Tilt corner wise

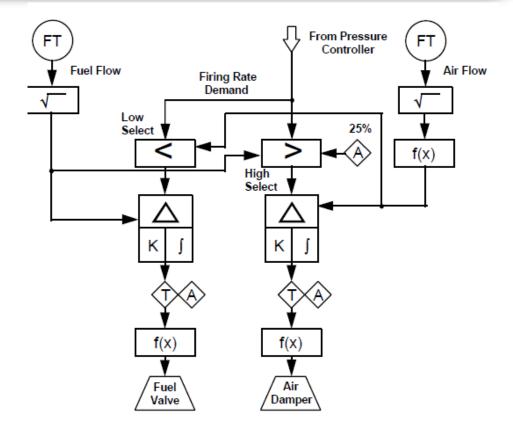
check the plausibility of the solution a manual test on SADC dampers was carried out Results were successful

Solution

CLOSE LOOP COMBUSTION TO ADAPT

Date | Title of Presentation

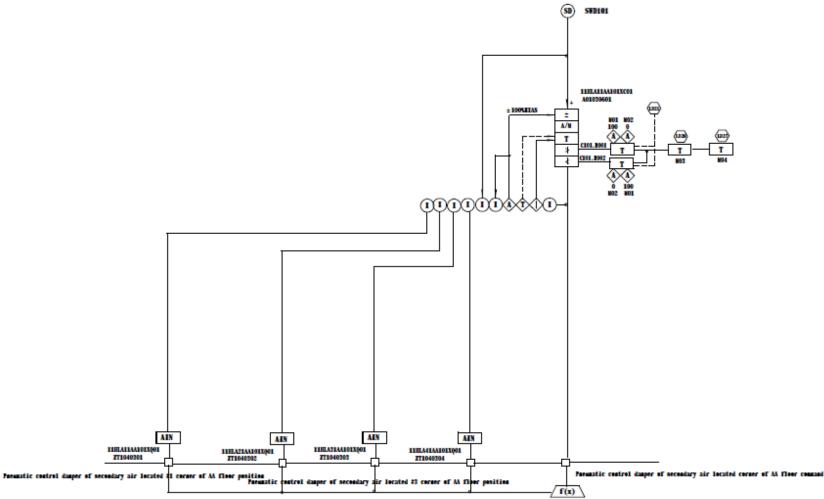
Page 58



Steps in a closed loop combustion optimization

- 1. Communication: to communicate with a DCS, MODBUS (TCP/IP)
- 2. Control modification: different control loops Biasing the set point
- 3. Exploration: A process of generating a step tests to create a learning set for data driven models (Neural Nets, Auto regression models, etc.,)
- 4. Defining the. Right and left imbalance is the objective

Combustion control


Combustion controls have two purposes:

(1) maintain constant steam conditions under varying loads by adjusting fuel flow,

(2) maintain an appropriate combustion air-to-fuel flow

Control Modification (actual loop)

Paramatic control damper of secondary air located #4 corner of AA floor position

... Ideas & Solutions for Tomorrow

