
Block	ads	on	android	tv

http://urseghy.com/c3?utm_term=block+ads+on+android+tv




Block	ads	on	sony	android	tv.	How	to	block	youtube	ads	on	android	tv	box.	How	to	stop	ads	on	android	tv.	How	do	i	block	ads	on	youtube	android	tv.	How	to	block	all	ads	on	android	tv.	How	to	block	ads	on	youtube	app	android	tv.	Block	ads	on	android	tv	box.	Block	ads	on	android	tv	youtube.

(Pocket-lint)	-	No	one	likes	to	be	interrupted	by	annoying	ads,	but	it	has	become	a	common	occurrence	on	our	phones.	Most	people	know	they	can	block	ads	on	their	computer	or	laptop,	but	our	phones	usually	suffer	from	these	things.	Long	gone	are	the	days	when	you	could	install	Ad	Block	Plus	from	the	Play	Store,	Google	no	longer	allows	system-
wide	ad	blocking.	So	how	do	you	block	ads?	Fortunately,	it's	very	easy	and	we've	covered	everything	in	this	tutorial.	But	first,	a	few	things	need	to	be	mentioned.	It's	important	to	remember	that	advertising	helps	keep	websites	(including	this	one)	running	and	is	also	important	for	content	creators.	Although	they	can	be	annoying,	in	some	cases	it's
worth	allowing	ads	to	support	content	you	like.	We	also	focus	on	blocking	ads	in	the	browser.	Note	that	these	solutions	do	not	block	ads	in	other	applications	such	as	games.	With	that,	let's	move	on	to	the	guide.	How	to	block	pop-ups	and	annoying	ads	in	Chrome	Chrome	is	the	default	browser	on	most	Android	phones,	and	as	such	the	vast	majority	of
people	stick	with	it.	However,	you	don't	need	to	switch	to	another	browser	to	block	ads.	Fortunately,	Chrome	has	some	useful	built-in	tools	to	help	you	with	this.	The	only	caveat	is	that	Chrome	doesn't	block	all	ads,	but	only	pop-ups	and	ads	it	deems	intrusive	or	misleading.	How	to	activate	features:	Pocket-lint	Open	Chrome	on	your	Android	phone.
Click	on	the	three	dots	in	the	upper	right	corner.	Click	on	"Settings".	Scroll	down	to	"Site	Settings"	and	select	a	page.	Click	"Advertise"	and	do	the	same.	Chrome	will	now	prevent	most	pop-ups	from	loading	and	completely	block	ads	on	sites	with	misleading	and	intrusive	ads.	In	a	way,	it's	the	best	of	both	worlds,	as	it	allows	you	to	support	the	content
you	care	about	without	suffering	much.(Pocket	Patch)	-	Nobody	likes	to	be	interrupted	by	annoying	ads,	but	it	has	become	commonplace	on	our	phones.	Most	people	know	that	they	can	block	ads	on	their	desktops	or	laptops,	but	our	phones	usually	suffer	from	it.	Long	gone	are	the	days	when	you	could	install	Ad	Block	Plus	from	the	Play	Store,	Google
no	longer	allows	system-wide	ad	blockers.	How	do	you	block	ads?	Luckily,	it's	very	easy	and	this	guide	has	it	all	covered.	But	first,	a	few	things	should	be	mentioned.	It's	important	to	remember	that	ads	help	keep	websites	(including	this	one)	running	and	are	also	important	for	content	creators.	While	they	can	be	annoying,	there	are	times	when	it's
worth	allowing	ads	to	support	the	content	you	offer.	Love.	Also,	we	focus	on	blocking	ads	in	the	browser.	So	remember	that	these	solutions	do	not	block	ads	in	other	apps	like	games.	With	that	said,	let's	dive	into	the	guide.	How	to	Block	Popups	and	Annoying	Ads	in	Chrome	Chrome	is	the	default	browser	on	most	Android	phones	and	hence	most
people	follow	it.	However,	you	don't	have	to	switch	to	a	different	browser	to	block	ads.	Luckily,	Chrome	has	some	handy	tools	built	in	to	help	you	with	that.	The	only	caveat	is	that	Chrome	doesn't	block	all	ads,	only	pop-ups	and	ads	that	it	finds	intrusive	or	misleading.	To	enable	the	features:	Pocket	Clips	Open	Chrome	on	your	Android	phone.	Click	on
the	three	dots	in	the	top	right.	Click	on	"Settings".	Scroll	down	to	"Site	Settings"	and	select	it.	Click	on	"Pop-ups	and	Redirects".	Make	sure	the	slider	is	moved	to	the	left.	Back	to	previous.	pageClick	on	the	ad	and	do	the	same.	Chrome	now	prevents	most	pop-ups	from	loading	and	completely	blocks	ads	on	websites	with	misleading	and	intrusive
advertising.	In	a	way,	it's	the	best	of	both	worlds,	as	it	allows	you	to	support	content	you	care	about	without	horrible	suffering.But	what	if	you	want	to	go	ahead	and	block	everything?	Read	more.	How	to	block	ads	in	different	browsers	If	you're	ready	to	ditch	Chrome,	there	are	plenty	of	browsers	that	offer	more	effective	ad	blocking	options.	Just	keep
in	mind	that	if	you	use	this,	you	won't	be	able	to	sync	your	history	and	bookmarks	with	Chrome	on	your	desktop.	Pocket-lint	Our	favorite	option	is	Firefox,	which	lets	you	install	add-ons	that	act	as	Chrome	extensions	on	your	desktop.	uBlock	Origin	is	a	powerful	free	and	open	source	ad	blocker	that	can	be	easily	added	to	Firefox	for	Android	and	will
block	almost	anything.	Another	great	and	full-featured	browser	is	Opera,	which	has	a	powerful	ad	blocker	built	in	and	even	a	free	VPN.	There's	even	a	simple	Adblock	browser	if	you	just	want	to	block	ads.	How	to	block	ads	in	apps	Browsers	have	it	figured	out,	but	what	if	you	want	to	block	ads	in	other	apps?	As	we	mentioned	earlier,	Google	removed
ad-blocking	apps	from	the	Play	Store	a	long	time	ago,	but	that	doesn't	mean	you	can't	block	ads	elsewhere.	You'll	need	to	download	these	apps,	which	can	be	a	little	tricky	if	you've	never	done	it	before,	but	that	doesn't	mean	the	apps	aren't	trustworthy	—	it's	just	that	Google	isn't	interested	in	you	using	them.	.	Which	is	understandable	given	its
business	model.	The	Best	iPhone	Apps	of	2022:	The	Complete	Guide	Maggie	Tillman	April	30,	2022	These	are	the	absolute	best	iPhone	apps	available	right	now,	from	productivity	apps	to	travel,	reading,	music,	and	more.	Apps	like	AdGuard	and	AdLock	are	developed	by	well-known	cybersecurity	brands,	so	they	should	be	completely	safe	to	use.	The
downside	is	that	they're	subscription-based,	so	you'll	have	to	pay	a	monthly	fee	after	the	trial	period	ends.	Written	by	Luke	Baker.	Android	Studio's	Gradle	build	makes	it	easy	to	include	external	binaries	or	other	library	modules	as	dependencies	in	your	build.	Dependencies	may	be	on	your	computerin	the	remote	repository,	and	any	transitive
dependencies	they	declare	are	automatically	included	as	well.	This	page	describes	how	dependencies	are	used	in	an	Android	project,	including	details	on	how	the	Android	Gradle	plugin	works	and	how	to	configure	it.	For	more	detailed	conceptual	guidance	on	Gradle	dependencies,	see	the	Gradle	Dependency	Management	Guide.	However,	note	that
your	Android	project	should	only	use	the	dependency	configurations	defined	on	this	page.	Note.	Don't	use	dynamic	version	numbers	like	"com.android.tools.build:gradle:3.+"	when	specifying	dependencies.	Using	this	feature	can	result	in	unexpected	version	updates	and	difficulty	resolving	version	differences.	Dependency	Types	To	add	a	dependency
to	your	project,	specify	the	dependency	configuration,	e.g.	B.	Implementation,	in	the	dependency	block	of	the	module's	build.gradle	file.	For	example,	this	application	module	file	build.gradle	has	three	different	types	of	dependencies:	plugins	{	id	'com.android.application'	}	android	{	...	}dependencies	{	//	library	module	implementation	dependency	(
':mylibrary'	)	//	Depends	on	local	binary	implementation	fileTree(dir:	'libs',	include:	['*.jar'])	//	Depends	on	remote	binary	implementation	'com.example.android:app-magic:12.3'	}	plugins	{	id	("com	.android	.application"	)	}	android	{	...	}dependencies	{	//	Dependency	on	local	library	module	implementation	(project(":mylibrary"))	//	Dependency	on	local
binary	implementation	(fileTree	(mapOf("dir")	on	"	libs"	,	"include	"	to	listOf("*.jar")))))	//	Dependency	on	remote	binary	implementation	("com.example.android:app-magic:12.3")	}	Each	requires	a	different	type	of	library	dependency	as	follows:	Dependency	implementation	of	the	local	library	module	project(':mylibrary')
Implementation(project(":mylibrary"))	Explain	e	the	conformance	of	the	Android	library	module	named	"mylibrary"	(this	name	must	match	the	defined	library	nameinclude:	in	settings.gradle).	When	building	an	application,	the	build	system	compiles	the	library	module	and	packages	the	resulting	compiled	content	into	the	application.	local	binary
dependency	implementation	fileTree(dir:	'libs',	include:	['*.jar'])	implementation(fileTree(mapOf("dir"	to	"libs",	"include"	to	listOf("*.jar")))	)	)	Gradle	declares	dependencies	on	JAR	files	in	your	project's	module_name/libs/	directory	(because	Gradle	reads	paths	relative	to	build.gradle	file).	You	can	also	specify	individual	files	as	follows:	implementation
files('libs/foo.jar',	'libs/bar.jar')	Binary	dependency	implementation	"com.example.android:app-magic:12.3"	("com.example.	android:app-magic:12.3")	This	is	actually	short	for:	implementation	group:	"com.example.android",	name:	"app	-magic",	version:	implementation	"12.3"	(group	=	"com.example.android",	name	=	"app-magic",	version	=	"12.3")
This	declares	a	dependency	on	the	12.3	version	of	the	"app-magic"	library	in	the	namespace	group	"	com.example.android".	Note.	Such	remote	dependencies	must	be	declared	by	the	corresponding	remote	repositories,	where	Gradle	should	look	for	the	library.	If	the	library	doesn't	already	exist	locally,	Gradle	will	fetch	it	from	the	remote	site	when	it's
needed	for	a	build	(for	example,	when	you	click	Sync	project	with	Gradle	files	or	when	running	a	build).	If	you	rely	on	an	AGP	dependency	at	runtime	build,	be	sure	to	add	it	as	an	explicit	dependency	uses	the	API/implementation	configuration	internally,	some	artifacts	may	be	removed	from	the	build	classpath	and	the	build	classpath	may	change.
Native	dependencies	Starting	with	the	Android	Gradle	4.0	plugin,	native	dependencies	can	also	be	imported	as	described	in	this	document.	Depending	on	the	AAR	that	provides	the	native	libraries,	it	will	automatically	make	them	available	to	the	build	system	via	externalNativeBuild.	To	have	an	accessyou	must	reference	it	from	your	code	in	your
native	build	scripts.	For	more	information,	see	the	Using	Local	Dependencies	section	of	this	document.	Dependency	Configuration	In	the	Dependencies	block,	you	can	declare	a	library	dependency	using	one	of	several	different	dependency	configurations	(such	as	the	implementation	shown	above).	Each	dependency	configuration	gives	Gradle	different
instructions	for	using	the	dependency.	This	table	describes	all	the	configurations	you	can	use	for	an	Android	project	dependency.	The	table	also	compares	these	configurations	to	those	deprecated	by	Android	Gradle	plugin	3.0.0.	Gradle's	configuration	behavior	implementation	adds	the	dependency	to	the	compilation	classpath	and	includes	the
dependency	in	the	build	output.	However,	when	a	module	configures	an	implementation	dependency,	it	tells	Gradle	that	you	don't	want	the	module	to	propagate	the	dependency	to	other	modules	at	compile	time.	This	means	that	the	dependency	is	only	available	to	other	modules	at	runtime.	Using	this	dependency	configuration	instead	of	api	or
compile	(deprecated)	can	significantly	reduce	build	time	by	reducing	the	number	of	modules	the	build	system	needs	to	recompile.	For	example,	if	an	implementation	dependency	changes	its	API,	Gradle	recompiles	only	that	dependency	and	the	modules	that	directly	depend	on	it.	Most	applications	and	test	modules	should	use	this	configuration.	The
gradle	api	adds	a	dependency	on	compiling	the	classpath	and	creating	the	output.	If	a	module	has	an	API	dependency,	it	tells	Gradle	that	the	module	wants	to	temporarily	export	that	dependency	to	other	modules	so	that	it	is	available	at	runtime	and	compile	time.	This	configuration	works	like	compile	(which	is	now	deprecated),	but	use	it	carefully
and	only	with	dependencies	that	need	to	be	temporarily	exported	to	other	upstream	consumers.	This	is	because	when	an	API	dependency	changes	its	external	API,	Gradleall	modules	that	have	access	to	this	dependency	at	compile	time.	Therefore,	a	large	number	of	API	dependencies	can	significantly	increase	compilation	time.	Unless	you	plan	to
expose	API	dependencies	to	a	separate	module,	library	modules	should	use	implementation	dependencies	instead.	CompileOnly	Gradle	only	adds	a	dependency	to	the	build	classpath	(i.e.	it's	not	added	to	the	build	output).	It's	useful	when	you're	building	an	Android	module	and	need	a	compile-time	dependency,	but	its	presence	at	runtime	is	optional.
When	using	this	setup,	the	library	module	needs	to	include	a	runtime	condition	to	check	if	the	dependency	is	available,	then	neatly	modify	its	behavior	to	continue	working	even	if	not	deployed.	This	helps	to	reduce	the	size	of	the	final	application	by	not	adding	non-critical	transient	dependencies.	This	configuration	behaves	exactly	as	stated	(which	is
now	deprecated).	Note:	You	cannot	use	build-only	configurations	with	AAR	dependencies.	runtimeOnly	Gradle	will	only	add	a	dependency	to	the	build	output	for	use	at	runtime.	This	means	it	is	not	added	to	the	build	classpath.	This	setup	behaves	exactly	like	the	apk	(which	is	now	deprecated).	annotationProcessor	To	add	a	dependency	on	an
annotation	processor	library,	add	it	to	the	annotation	processor	class	using	the	annotationProcessor	configuration.	This	is	because	using	this	configuration	improves	build	performance	by	separating	the	build	classpath	from	the	annotation	processor	classpath.	If	Gradle	finds	annotation	processors	in	the	build's	classpath,	build	avoidance	is	disabled,
which	negatively	affects	build	time	(Gradle	5.0	and	above	ignores	annotation	processors	found	in	the	build's	classpath).	The	Android	Gradle	plugin	considers	a	dependency	as	an	annotation	processor	if	its	JAR	contains	the	following	file:	META-INF/services/javax.annotation.processing.Processor	If	the	plugin	detects	an	annotation	processorCompiling
the	classpath	will	cause	a	build	error.	Note.	Kotlin	projects	should	use	capt	to	declare	annotation	processor	dependencies.	lintChecks	Use	this	configuration	to	include	lint	checks	that	Gradle	should	run	when	building	a	project.	Note.	If	you're	using	Android	Gradle	plugin	3.4.0	and	later,	this	dependency	configuration	no	longer	includes	thread	checks
in	your	Android	library	projects.	To	include	the	patch	check	dependencies	in	your	AAR	libraries,	use	the	lintPublish	configuration	described	below.	lintPublish	Use	this	configuration	in	your	Android	library	projects	to	include	the	patch	checks	you	want	Gradle	to	compile	into	a	lint.jar	file	and	package	into	your	AAR.	Thus,	projects	that	consume	your
AAR	will	also	use	these	thread	checks.	If	you	previously	used	the	lintChecks	dependency	configuration	to	include	lint	checks	in	your	published	AAR,	you	must	migrate	those	dependencies	to	use	the	lintPublish	configuration	instead.	Dependencies	{	//	Run	thread	check	from	project	":checks"	during	build.	lintChecks	project(':checks')	//	Compiles	the	lint
checks	from	':checks-to-publish'	//	into	lint.jar	and	publishes	it	to	your	Android	library.	lintPublish	project(':checks-to-publish')	}dependencies	{	//	Run	the	lint	check	from	project	":checks"	during	build.	lintChecks(project(":checks"))	//	Compiles	the	collection	checks	from	":checks-to-publish"	//	into	a	lint.jar	file	and	publishes	it	to	your	Android	library.
lintPublish(project(":test-publish"))	}	The	Gradle	APK	only	adds	a	dependency	to	create	the	output	for	use	at	runtime.	That	is,	it	is	not	added	to	the	compilation	classpath.	This	configuration	is	deprecated	(available	in	AGP	1.0-4.2).	Compile	Gradle	adds	the	dependency	to	the	compiler	classpath	and	build	output	and	exports	the	dependency	to	other
modules.	This	configuration	is	deprecated	(available	in	AGP	1.0-4.2).	provided	that	Gradle	only	adds	the	dependency	to	the	compilation	classpath	(ie	it	is	not	added	to	the	buildThis	configuration	is	deprecated	(available	in	AGP	1.0-4.2).	All	of	the	above	configurations	apply	dependencies	to	all	build	variants.	If	instead	you	want	to	declare	a	dependency
only	on	a	specific	build	variant	source	set	or	test	source	set,	you	must	capitalize	the	configuration	name	and	precede	it	with	the	build	variant	or	test	source	set	name.	For	example,	to	add	an	implementation	dependency	to	only	the	"free"	product	variant	(using	a	remote	binary	dependency),	it	would	look	like	this:	dependencies	{	freeImplementation
'com.google.firebase:firebase-ads:9.8.0'	}	dependencies	{	freeImplementation(	"	com.	google.firebase:firebase-ads:9.8.0")	}	However,	if	you	want	to	add	a	dependency	for	a	variant	that	combines	a	product	variant	and	a	build	type,	you	must	initialize	the	config	name	in	config	block.	The	following	example	adds	a	runtimeOnly	dependency	(using	a	local
binary	dependency)	to	the	freeDebug	build	variant.	configurations	{	//	Initializes	the	dependency	configuration	placeholder	freeDebugRuntimeOnly.	freeDebugRuntimeOnly	{}	}dependencies	{	freeDebugRuntimeOnly	fileTree(dir:	'libs',	include:	['*.jar'])	}	//	Initializes	the	freeDebugRuntimeOnly	dependency	configuration	placeholder.	val
freeDebugRuntimeOnly	with	config.	Create	dependencies	{	freeDebugRuntimeOnly(fileTree(mapOf("dir"	to	"libs",	"include"	to	listOf("*.jar"))))	}	To	add	implementation	dependencies	for	local	tests	and	instrument	tests,	it	looks	like	this:	Dependencies	{	//	Add	remote	binary	dependency	for	local	testing	only.	testImplementation	'junit:junit:4.12'	//	Add
remote	binary	dependency	for	instrumented	test	APK	only.	androidTestImplementation	'androidx.test.espresso:espresso-core:3.0.2'	}dependencies	{	//	Adds	a	remote	binary	dependency	for	local	testing	only.	testImplementation("junit:junit:4.12")	//	Adds	a	remote	binary	dependency	for	the	instrumented	test	APK	only.}	However,	some	configurations
do	not	make	sense	in	this	situation.	For	example,	since	other	modules	cannot	depend	on	AndroidTest,	if	you	use	the	androidTestApi	configuration,	you	will	get	the	following	warning:	WARNING.	The	configuration	"androidTestApi"	is	deprecated	and	has	been	replaced	by	"androidTestImplementation".	Adding	annotation	handlers	When	you	add
annotation	handlers	to	the	build	classpath,	you	get	an	error	message	similar	to	the	following:	Error:	Annotation	handlers	must	now	be	explicitly	declared.	To	avoid	this	error,	add	annotation	processors	to	the	project	by	configuring	a	dependency	with	the	annotationProcessor	tool	as	shown	below:	dependencies	{	//	Adds	the	annotation-defining	libraries
to	the	build	classpath	only.	compileOnly	"com.google.dagger:dagger:version-number"	//	Add	the	annotation	processor	dependency	to	the	annotation	processor	classpath.	annotationProcessor	'com.google.dagger:dagger-compiler:version-number'	}dependencies	{	//	Add	the	annotation-defining	library	to	the	build	classpath	only.
compileOnly("com.google.dagger:dagger:version-number")	//	Add	annotation	processor	dependency	to	annotation	processor	classpath.	annotationProcessor("com.google.dagger:dagger-compiler:version-number")	}	Note.	Android	Plugin	Gradle	3.0.0+	no	longer	supports	the	android-apt	plugin.	Passing	Arguments	to	Annotation	Processors	If	you	want
to	pass	arguments	to	an	annotation	processor,	you	can	do	so	using	the	AnnotationProcessorOptions	module's	build	configuration	block.	For	example,	if	you	want	to	pass	primitive	data	types	as	key-value	pairs,	you	can	use	the	argument	property	as	shown	below:	android	{	...	defaultConfig	{	...	javaCompileOptions	{	annotationProcessorOptions	{
argument	"key1",	"value1"	argument	"key2"	,	"value2"	}	}	}	}	Android	{	...	defaultConfig	{	...	javaCompileOptions	{	annotationProcessorOptions	{	argument	+	=	mapOf	("key1"	to	"value1",	"key2"	to	"value2")	}	}	}	}	with	the	Android	Gradle	plugin	version	3.2.0	or	higheryou	need	to	pass	cpu	arguments	representing	files	or	directories	using	the
Gradle	CommandLineArgumentProvider	interface.	Using	the	CommandLineArgumentProvider	allows	you	or	the	author	of	the	annotation	processor	to	improve	the	correctness	and	performance	of	incremental	pure	assemblies	and	cached	pure	assemblies	by	applying	incremental	annotations	of	the	assembly	property	type	to	each	argument.	For
example,	the	following	class	implements	CommandLineArgumentProvider	and	annotates	each	argument	to	the	processor.	The	example	also	uses	the	Groovy	syntax	and	is	included	directly	in	the	build.gradle	file	of	the	module.	Note.	Annotation	processor	authors	typically	provide	this	class	or	instructions	for	writing	such	a	class.	This	is	because	each
argument	must	specify	a	valid	assembly	property	type	annotation	for	it	to	work	correctly.	class	MyArgsProvider	Implements	CommandLineArgumentProvider	{	//	Annotates	each	directory	as	input	or	output	to	the	//	annotation	processor.	@InputFiles	//	Using	this	annotation	helps	Gradle	determine	which	part	of	the	//	file	path	to	consider	in	current
checks.	@PathSensitive(PathSensitivity.RELATIVE)	FileCollection	inputDir	@OutputDirectory	File	outputDir	//	The	class	constructor	sets	the	input	and	output	directory	paths.	MyArgsProvider(FileCollection	input,	File	output)	{	inputDir	=	input	outputDir	=	output	}	//	Specify	each	directory	as	a	command	line	argument	to	the	processor.	//	The	Android
plugin	uses	this	method	to	pass	arguments	//	to	the	annotation	processor.	@Override	Iterable	asArguments()	{	//	Use	the	"-Akey[=value]"	form	to	pass	parameters	to	the	Java	compiler.	["-AinputDir=${inputDir.singleFile.absolutePath}",	"-AoutputDir=${outputDir.absolutePath}"]	}	}	android	{...}	class	MyArgsProvider(	//	Mark	each	directory	as	input
or	output	for	//	@get:InputFiles	annotation	processor	//	Using	this	annotation	will	help	Gradle	determine	which	part	of	the	file	path	//	to	considercurrent	tests.	@get:PathSensitive(PathSensitivity.RELATIVE)	val	inputDir:	FileCollection,	@get:OutputDirectory	val	outputDir:	File	)	:	CommandLineArgumentProvider	{	//	Specify	each	directory	as	a
processor	command	line	argument.	//	The	Android	plugin	uses	this	method	to	pass	arguments	to	the	//	annotation	processor.	override	fun	asArguments():	Iterable	{	//	Use	the	"-Akey[=value]"	form	to	pass	your	options	to	the	Java	compiler.	return	listOf("-AinputDir=${inputDir.singleFile.absolutePath}",	"-AoutputDir=${outputDir.absolutePath}")	}	}
android	{...}	After	defining	a	class	that	implements	CommandLineArgumentProvider,	you	must	and	instantiate	it	pass	it	to	the	android	plugin	using	the	annotationProcessorOptions.compilerArgumentProvider	method	as	shown	below.	//	This	is	in	your	module's	build.gradle	file.	android	{	defaultConfig	{	javaCompileOptions	{
annotationProcessorOptions	{	//	Creates	a	new	MyArgsProvider	object,	specifies	the	input	and	//	output	paths	of	the	constructor,	and	passes	the	//	object	to	the	Android	plugin.	CompilerArgumentProvider	new	MyArgsProvider(files("input/path"),	new	File("output/path"))	}	}	}	}	//	This	is	in	your	module's	build.gradle	file.	android	{	defaultConfig	{
javaCompileOptions	{	annotationProcessorOptions	{	//	Creates	a	new	MyArgsProvider	object,	specifies	the	input	and	//	output	paths	of	the	constructor,	and	passes	the	//	object	to	the	Android	plugin.	CompilerArgumentProvider(MyArgsProvider(files("input/path"),	file("output/path")))	}	}	}	}	To	learn	more	about	how	the
CommandLineArgumentProvider	implementation	helps	improve	build	performance,	see	Caching	Java	projects.	Disable	annotation	processor	error	checking	If	you	have	dependencies	on	your	build	classpath	that	contain	annotation	processors	that	you	don't	need,	you	can	disable	error	checking	by	adding	the	following	to	your	build.gradle	file.	Note	that
the	annotation	processors	that	you	add	to	the	compilation	classpath	are	still	not	added	to	the	processorandroid	{	...	defaultConfig	{	...	javaCompileOptions	{	annotationProcessorOptions	{	includeCompileClasspath	false	}	}	}	}	android	{	...	defaultConfig	{	...	javaCompileOptions	{	annotationProcessorOptions	{	argument	("includeCompileClasspath",
"false")	}	}	}	}	If	used	Kotlin	and	kapt:	android	{	...	defaultConfig	{	...	kapt	{	includeCompileClasspath	false	}	}	}	android	{	...	defaultConfig	{	...	kapt	{	includeCompileClasspath	=	false	}	}	}	processor	class,	you	can	enable	annotation	processors	in	assembly	classpath	by	setting	includeCompileClasspath	to	true.	However,	setting	this	property	to	true
is	deprecated	and	this	setting	will	be	removed	in	a	future	Android	plugin	update.	Eliminating	transitive	dependencies	As	an	application	grows	in	size,	it	can	contain	a	number	of	dependencies,	including	direct	dependencies	and	transitive	dependencies	(libraries	that	imported	application	libraries	depend	on).	To	exclude	transitive	dependencies	that	are
no	longer	needed,	you	can	use	the	Exclude	keyword	like	this:	implementation	("some-library")	{	exclude	(group="com.example.imgtools",	module="native")	}	}	dependencies	from	test	configurations	If	you	want	to	exclude	certain	transitive	dependencies	from	your	tests,	the	code	shown	in	the	above	example	may	not	work	properly.	This	is	because	the
test	configuration	(like	androidTestImplementation)	extends	the	module's	implementation	configuration.	This	means	that	it	always	includes	implementation	dependencies	when	Gradle	resolves	the	configuration.	So	in	order	to	exclude	transitive	dependencies	from	your	tests,	you	should	do	it	at	run	time	like	below:	android.testVariants.all	{	variant	->
variant.getCompileConfiguration().	'group:	'com.jakewharton.threetenabp',	module:	'threetenabp'	}	android.testVariants.all	{	compileConfiguration.exclude(group	=	"com.jakewharton.threetenabp",	module	=	"threetenabp")	runtimeConfiguration.exclude(group	=	"com	.jakewharton.threetenabp",	module	=	"threetenabp")	}	Note:	You	can	still	use	the
exclusive	keyword	in	the	dependency	block,	as	shown	in	the	original	code	example	of	Excluding	transitive	dependencies,	to	bypass	transitive	dependencies	that	are	specific	to	your	test	setup	and	not	be	included	.	in	other	configurations.	Configuring	Wear	OS	app	dependencies	Configuring	dependencies	for	a	Wear	OS	module	is	similar	to	any	other
module;	That	is,	Wear	OS	modules	only	use	the	same	dependency	configurations	as	implement	and	build.	Wear	modules	also	support	variant-aware	dependency	management.	So	if	the	app's	base	module	has	a	dependency	on	the	Wear	module,	each	variant	of	the	base	module	uses	the	corresponding	variant	from	the	Wear	module.	If	you	are	building	a
simple	app	that	depends	on	only	one	Wear	module,	where	the	module	configures	the	same	variants	as	the	base	module,	you	must	specify	the	wearApp	configuration	in	the	base	module's	build.gradle	file	as	shown	below:dependencies	{	//	If	the	main	modules	and	app	modules	only	wear	these	variants,	//	variant-aware	dependency	management
automatically	links	//	variants	of	the	main	application	module	to	the	variants	of	the	wear	module.	wearApp	project(':wearable')	}dependencies	{	//	If	the	main	application	module	and	the	wear	module	have	the	same	variants,	//	variant-aware	dependency	management	automatically	merges	//	the	main	application	module	variants	with	the	wear	module
variants.	wearApp(project(":wearable"))	}	If	you	have	multiple	wear	modules	and	want	to	specify	a	different	wear	module	for	each	version	of	the	app,	you	can	do	that	using	the	FlavorWearApp	configuration	as	follows	(but	you	can't	specify	other	dependencies	include	that	use	the	wearApp	configuration):	dependencies	{	paidWearApp
project(':wear1')project(':wear1')	freeWearApp	project(':wear2')	}dependencies	{	"paidWearApp"(project(":wear1"))	"demoWearApp"(project(":wear1"))	"freeWearApp"(project(":	Wear2"))	}	Remote	repositories	If	your	dependency	is	not	a	local	library	or	file	tree,	Gradle	looks	for	files	in	the	online	repositories	specified	in	the
DependencyResolutionManagement	{	repositories	{...}	}	block	of	your	settings.gradle	file.	The	order	in	which	you	list	each	repository	determines	the	order	in	which	Gradle	looks	for	the	repositories	for	each	project	dependency.	For	example,	if	a	dependency	is	available	from	both	repository	A	and	repository	B,	and	you	specify	A	first,	Gradle	will
download	the	dependency	from	repository	A.	By	default,	new	Android	Studio	projects	specify	the	Google	Maven	repository	and	the	Maven	central	repository	as	repository	locations	in	the	settings	file	.gradle	of	the	project	as	shown	below:	DependencyResolutionManagement	{	repositoriesMode.set(RepositoriesMode.FAIL_ON_PROJECT_REPOS)
repositories	{	google()	mavenCentral()	}	}	DependencyResolutionManagement	{	repositoriesMode.set(RepositoriesMode.FAIL_ON_PROJECT_REPOS)	repositories	{	google()	mavenCentral()	}	Warning:	31	March	2021	The	default	JCenter	repository	is	read-only.	For	more	information,	see	Updating	the	JCenter	Service.	If	you	need	something	from	a
local	repository	use	mavenLocal():dependencyResolutionManagement	{	repositoriesMode.set(RepositoriesMode.FAIL_ON_PROJECT_REPOS)	repositories	{	google()	mavenCentral()	mavenLocal()	}	}dependencyResolutionManagement	{	repositoriesMode.set(RepositoriesMode.FAIL_ON_PROJECT_REPOS)	repositories	{	google	(	)	mavenCentral()
mavenLocal()	}	}	You	can	also	declare	specific	Maven	or	Ivy	repositories	like	this:	}	maven	{	url	'file://local/repo/'	}	ivy	{	url}	}	}dependencyResolutionManagement	{	repositoriesMode.set(RepositoriesMode.FAIL_ON_PROJECT_REPOS)	Repositories	{	maven(url	=	"	)	maven(url	=	"file://local/repo/")	ivy(	url="	)	}	}	See	the	Gradle	Repositories	Guide
for	more	information.	Google	Maven	Repository	The	latest	versions	of	the	following	Android	libraries	are	available	in	the	Google	Maven	Repository:	You	can	see	all	available	artifacts	in	the	Google	Maven	Repository	Index	(see	programmatic	access	below).	To	add	one	of	these	libraries	to	your	build,	add	the	Google	Maven	repository	to	your	top-level
build.gradle	file:	dependencyResolutionManagement	{	repositoriesMode.set(RepositoriesMode.FAIL_ON_PROJECT_REPOS)	repositories	{	google()	//	If	you	have	a	Gradle	version	lower	than	4.1,	instead	you	should	use:	//	maven	{	//	url	'	'	//	}	//	Alternative	URL	is	"	dl/android/	maven2	/	'.	}	}dependencyResolutionManagement	{
repositoriesMode.set(RepositoriesMode.FAIL_ON_PROJECT_REPOS)	repositories	{	google()	//	If	you	are	using	a	version	of	Gradle	earlier	than	4.1,	you	should	use:	//	maven	instead	{	//	url	=	"https	://	maven	.	google.com"	//	}	//	An	alternative	URL	is	"	.	}	}	Next,	add	the	required	library	to	your	module's	dependencies	block.	For	example,	the
Appcompat	library	looks	like	this:	dependencies	{	implementation	'androidx.appcompat:appcompat:1.2.0'	}	dependencies	{	implementation	("com.an	droid.support:appcompat-v7:28.0.0")	}	However,	if	for	example	you	try	to	use	an	older	version	of	the	above	libraries	and	your	the	dependency	fails,	it	is	not	available	in	the	Maven	repository	and	you
have	to	get	from	the	offline	repository.Programmatic	access	To	access	Google	Maven	artifacts	programmatically,	you	can	get	a	list	of	XML	artifact	groups	at	maven.google.com/master-index.xml.Then	you	can	view	their	names	and	versions	libraries	for	each	group	at:For	example,	the	libraries	in	the	android.arch.lifecycle	group	are	listed	at
maven.google.com/android/arch/lifecycle/group-index.xml.	You	can	also	download	the	POM	and	JAR	files	from	maven.google.com/group_path/library/version/library-version.ext,	for	example:	maven.google.com/android/arch/lifecycle/compiler/1.0.0/compiler.	-	1.	0.0	assists	Offline	Repository	from	SDK	Manager	For	libraries	not	available	from	Google
Maven	repository	(usually	older	versions	of	libraries),	download	the	Google	Offline	Repository	package	from	SDK	Manager.	You	can	then	add	these	libraries	to	your	dependency	block	as	usual.	Offline	libraries	are	stored	in	the	android_sdk/extras/	folder.	The	native	AAR	dependencies	of	the	Android	Gradle	plugin	may	contain	native	dependencies	that
the	Android	Gradle	plugin	can	use.	AGP	is	also	able	to	create	AARs	that	expose	local	libraries	to	their	consumers.	Using	Native	Dependencies	Starting	with	the	Android	Gradle	4.0	plugin,	C/C++	dependencies	can	be	imported	from	AARs	that	are	linked	in	the	build.gradle	file.	Gradle	will	automatically	make	them	available	to	your	local	build	system,
but	your	build	system	must	be	configured	to	use	the	imported	libraries	and	headers.	Since	C/C++	dependencies	are	distributed	as	AARs,	the	following	links	to	generic	AARs	may	be	useful:	Creating	an	Android	library	for	generic	AAR	documentation	and	integrating	it	into	your	project,	especially	if	you	want	to	use	AAR	as	native	C/C++.	addiction.	Add
Build	Dependencies	for	information	about	adding	dependencies	to	build.gradle,	especially	for	remote	dependencies.	This	document	focuses	on	how	to	set	up	a	native	build	system	and	assumes	that	you	have	already	added	a	C/C++	dependent	AAR	to	your	project's	Gradle	build	environment.	AAR	Native	Dependencies	AAR	dependencies	of	Gradle
modules	can	provide	native	libraries	for	your	application	to	use.	Inside	the	AAR,	the	prefab	directory	contains	the	prefab	package	that	contains	the	headersown	dependency	library.	Each	dependency	can	provide	at	most	one	build	package	containing	one	or	more	modules.	A	prefabricated	module	is	a	standalone	library	that	can	be	shared,	static,	or	just
a	header.	To	use	libraries,	you	need	to	know	the	package	and	module	names.	By	convention,	the	package	name	will	be	the	name	of	the	Maven	artifact,	and	the	module	name	will	be	the	name	of	the	C/C++	library,	but	this	is	not	required.	See	the	dependency	documentation	to	see	what	names	it	uses.	Build	Configuration	Android	Gradle	Plugin	4.0
Android	Gradle	Plugin	4.1+	Your	Android	Gradle	Module	must	have	build	enabled.	To	do	this,	add	the	following	to	the	Android	block	in	the	module's	build.gradle	file:	buildFeatures	{	prefab	true	}	buildFeatures	{	prefab	=	true	}	Further	configure	the	version	in	the	project's	gradle.properties	file:	the	default	AGP	version	will	suit	your	needs.	You
should	only	choose	a	different	version	if	there	is	a	bug	that	needs	to	be	fixed	or	if	you	need	a	new	feature.	Dependencies	imported	from	AAR	are	made	available	to	CMake	via	CMAKE_FIND_ROOT_PATH.	This	value	is	automatically	set	by	Gradle	when	you	call	CMake,	so	if	your	build	changes	this	variable,	be	sure	to	attach	it	instead	of	assigning	it.
Each	dependency	makes	the	config	file	package	available	to	your	build.	They	are	imported	using	the	find_package	command.	This	command	looks	for	configuration	file	packages	that	match	the	given	package	name	and	version,	and	provides	the	targets	it	defines	to	use	in	your	build.	For	example,	if	your	application	defines	a	libapp.so	file	and	uses
cURL,	the	CMakeLists.txt	file	should	contain	the	following	text:	add_library(app	SHARED	app.cpp)	#	Add	these	two	lines.	find_package(curl	REQUIRED	CONFIGURATION)	target_link_libraries(app	curl::curl)	app.cpp	can	now	#include	"curl/curl.h",	libapp.so	will	automatically	link	to	libcurl.so	on	build	and	libcurl.so	willwith	application.	Publishing
local	libraries	to	AAR.	The	ability	to	create	native	AARs	was	first	added	in	AGP	4.1.	To	export	native	libraries,	add	the	following	to	the	Android	block	in	your	library	project's	build.gradle	file:	buildFeatures	{	prefabPublishing	true	}	prefab	{	mylibrary	{	headers	"src/main/cpp/mylibrary/include"	}	myotherlibrary	{	headers	"	src/	main	/
cpp/myotherbibrary/	include"	}	}	buildFeatures	{	prefabPublishing	=	true	}	prefabs	{	create("mylibrary")	{	headers	=	"src/main/cpp/myotherbibrary/include"	}	create("myotherbibrary")	{	headers	=	"src/main/cpp/	myotherlibrary/include"	}	}	In	this	example,	myotherlibrary	and	myotherlibrary	from	your	ndk	build	or	external	CMake	native	are
packaged	into	the	AAR	generated	by	your	build,	and	each	exported	with	headers	from	a	specified	directory	to	their	dependents	.	Dependency	Order	The	order	in	which	dependencies	are	listed	indicates	their	priority:	the	first	library	has	a	higher	priority	than	the	second,	the	second	has	a	higher	priority	than	the	third,	and	so	on.	This	order	is	important
when	combining	features	or	manifest	items	from	libraries	into	applications.	For	example,	if	your	project	declares:	a	dependency	on	LIB_A	and	LIB_B	(in	that	order),	and	LIB_A	depends	on	LIB_C	and	LIB_D	(in	that	order),	and	LIB_B	also	depends	on	LIB_C,	then	the	unified	dependency	order	is:	This	ensures	that	both	LIB_A	,	both	LIB_B	can	overwrite
LIB_C;	and	LIB_D	still	has	higher	priority	than	LIB_B	because	LIB_A	(which	depends	on	it)	has	higher	priority	than	LIB_B.	For	more	information	on	merging	manifests	from	different	project	sources/dependencies,	see	Merge	multiple	manifest	files.	Viewing	Module	Dependencies	Some	direct	dependencies	may	have	dependencies	of	their	own.	These
are	called	transient	dependencies.	Instead	of	manually	declaring	each	transient	dependency,	Gradle	automatically	compiles	and	adds	them	for	you.	Android	pluginGradle	provides	a	task	that	lists	the	dependencies	that	Gradle	resolves	for	a	given	module.	For	each	module,	the	report	also	includes	dependencies	grouped	based	on	build	variant,	test
source	set,	and	classpath.	Below	is	an	example	report	of	the	app	module	runtime	classpath	in	the	debug	build	variant	and	the	build	classpath	of	its	instrumented	set	of	test	sources.	debugRuntimeClasspath	-	runtime/package	dependencies	+---	:mylibrary	(variant:	debug)	+---	com.google.android.material:material:1.0.0@aar	+---
androidx.appcompat:appcompat:1.0.	2	@	aar	+---	androidx.constraintlayout:constraintlayout:1.1.3@aar	+---	androidx.fragment:fragment:1.0.0@aar	+---	androidx.vectordrawable:vectordrawable-animated:1.0.0@aar	+	-	--	androidx.recyclerview:recyclerview:1.0.0@aar	+---	androidx.legacy:legacy-support-core-ui:1.0.0@aar	...	debugAndroidTest
debugAndroidTestCompileClasspath	-	Compile	dependencies	+---	androidx	.	test.ext:junit:1.1.0@aar	+---	androidx.test.espresso:espresso-core:3.1.1@aar	+---	androidx.test:runner:1.1.1@aar	+---	junit	:junit:4.12@jar	...	To	complete	the	task,	do	the	following:	Select	View	>	Tool	Windows	>	Gradle	(or	click	Gradle	in	the	Tool	Windows	panel).	Expand
AppName	>	Tasks	>	Android	and	double-click	androidDependencies.	Once	Gradle	finishes	the	job,	you	should	open	a	Run	window	to	see	the	output.	For	more	information	on	dependency	management	in	Gradle,	see	the	Basics	of	Dependency	Management	in	the	Gradle	User	Guide.	Fixing	Dependency	Resolution	Errors	When	you	add	multiple
dependencies	to	an	application	project,	these	direct	and	transitive	dependencies	can	cause	conflicts.	The	Android	Gradle	plugin	tries	to	neatly	resolve	these	conflicts,	but	some	conflicts	can	cause	compile-time	or	run-time	errors.	To	find	out	which	dependencies	are	causing	errors,	review	the	application's	dependency	tree	and	look	for	dependencies
that	appear	more	than	once	or	have	conflicting	versions.	If	you	cannot	easily	identify	re-addiction,Use	the	Android	Studio	UI	to	find	dependencies	that	contain	a	duplicate	class	as	follows.	Choose	Navigation	>	Class	from	the	menu	bar.	In	the	search	dialog	box	that	appears,	make	sure	that	"Include	non-project	items"	is	checked.	Enter	the	class	name
shown	in	the	build	error.	Check	the	results	for	class-related	dependencies.	The	following	sections	describe	the	different	types	of	dependency	resolution	errors	you	may	encounter	and	how	to	resolve	them.	Fixing	Duplicate	Class	Errors	If	a	class	appears	more	than	once	on	the	classpath,	you	will	receive	an	error	message	similar	to	the	following:
Program	type	already	exists	com.example.MyClass	This	error	typically	occurs	when	one	of	the	following	conditions	occurs:	A	binary	dependency	contains	a	library	that	your	application	is	also	included	as	a	direct	dependency.	For	example,	your	application	declares	a	direct	dependency	on	library	A	and	library	B,	but	library	A	already	contains	library	B
in	its	binary	form.	To	resolve	this	issue,	remove	the	B	library	as	a	direct	dependency.	Your	application	has	a	local	binary	dependency	and	a	remote	binary	dependency	on	the	same	library.	To	resolve	this	issue,	remove	one	of	the	binary	dependencies.	Resolving	Classpath	Conflicts	When	Gradle	resolves	the	compiler	classpath,	it	first	resolves	the
runtime	classpath	and	uses	the	result	to	determine	which	dependency	versions	to	add	to	the	compiler	classpath.	In	other	words,	the	runtime	classpath	defines	the	required	version	numbers	for	identical	child	classpath	dependencies.	Your	app's	runtime	classpath	also	defines	the	version	numbers	that	Gradle	needs	to	match	dependencies	in	the	app's



APK	runtime	classpath.	The	classpath	hierarchy	is	shown	in	Figure	1.	Figure	1.	The	version	numbers	of	dependencies	that	appear	on	multiple	classpaths	must	match	according	to	this	hierarchy.	A	conflict	can	arise	when	different	versions	of	the	same	dependency	appear	in	multiple	classpaths,	for	example	if	yourcontains	a	dependency	version	that
uses	an	implementation	dependency	configuration,	and	a	library	module	contains	another	dependency	version	that	uses	a	runtimeonly	configuration.	When	resolving	runtime	and	classpath	dependencies	at	build	time,	Android	Gradle	3.3.0	and	later	attempts	to	resolve	some	partial	conflicts	automatically.	For	example,	if	the	runtime	classpath	contains
library	A	version	2.0	and	the	build	classpath	contains	library	A	version	1.0,	the	plugin	will	automatically	update	the	build	classpath	dependency	to	version	2.0	of	library	A	to	avoid	errors.	However,	if	the	runtime	classpath	contains	a	version	1.0	library	and	the	build	classpath	contains	a	version	2.0	library,	the	plugin	will	not	downgrade	the	build
classpath	to	version	1.0	of	the	library	and	you	will	still	receive	an	error	message	similar	to	the	following	:	Dependency	conflict	com	.example.library:some-lib:2.0	in	the	my-library	project.	The	allowed	versions	of	runtime	classpath	(1.0)	and	build	classpath	(2.0)	are	different.	To	resolve	this	issue,	do	one	of	the	following:	Inject	the	required	dependency
version	into	the	library	module	as	an	API	dependency.	This	means	that	only	your	library	module	declares	the	dependency,	but	the	application	module	also	has	transient	access	to	its	API.	Alternatively,	you	can	declare	the	dependency	in	both	modules,	but	you	must	ensure	that	each	module	uses	the	same	version	of	the	dependency.	Consider	setting	the
property	project-wide	to	keep	versions	of	each	dependency	consistent	throughout	the	project.	Applying	Custom	Build	Logic	This	section	contains	additional	topics	that	may	be	useful	if	you	want	to	extend	the	Android	Gradle	plugin	or	write	your	own	plugin.	Publishing	Variant	Dependencies	for	Custom	Logic	A	library	may	have	functionality	that	other
projects	or	subprojects	may	need.	Publishing	to	a	library	is	the	process	by	which	a	library	is	made	available	to	users.	Libraries	can	control	whichits	consumers	have	access	at	compile	time	and	at	run	time.	There	are	two	separate	configurations	that	contain	transitive	dependencies	for	each	classpath	that	consumers	must	use	to	use	the	library,	as
described	below:	variant_nameApiElements:	This	configuration	contains	transitive	dependencies	that	are	available	to	consumers	at	compile	time.	variant_nameRuntimeElements:	This	configuration	contains	temporary	dependencies	available	to	consumers	at	run	time.	To	learn	more	about	the	relationship	between	the	various	configurations,	go	to	the
Java	Library	Plugin	Configurations	section.	Custom	Dependency	Handling	Strategies	A	project	can	depend	on	two	different	versions	of	the	same	library,	which	can	cause	dependency	conflicts.	For	example,	if	your	project	depends	on	version	1	of	module	A	and	version	2	of	module	B,	and	module	A	transitions	from	version	3	of	module	B,	a	dependency
version	conflict	occurs.	To	resolve	this	conflict,	the	Android	Gradle	plugin	uses	the	following	dependency	resolution	strategy:	When	a	plugin	detects	that	there	are	different	versions	of	the	same	module	in	the	dependency	graph,	it	defaults	to	the	highest	numbered	version.	However,	this	strategy	may	not	always	work	as	intended.	To	configure	a
dependency	resolution	strategy,	use	the	following	configurations	to	resolve	specific	variant	dependencies	required	by	a	task:	variant_nameCompileClasspath:	This	configuration	contains	the	compilation	class	path	resolution	policy	for	a	specific	variant.	variant_nameRuntimeClasspath:	This	configuration	contains	the	resolution	policy	for	the	runtime
classpath	of	the	specified	variant.	The	Android	Gradle	plugin	includes	getters	that	can	be	used	to	access	per-variant	configuration	objects.	So	you	can	use	the	variant	API	to	request	dependency	resolution,	as	shown	in	the	example	below:	android	{	applicationVariants.all	{	variant	->	//	Return	build	configuration
objectsvariant.getCompileConfiguration().resolutionStrategy	{	//	Use	the	Gradle	ResolutionStrategy	API	//	to	configure	how	this	variant	resolves	dependencies.	...	}	//	Returns	the	configuration	objects	of	the	runtime	variant.	variant.getRuntimeConfiguration().resolutionStrategy	{	...	}	//	Returns	the	configuration	of	the	variant	annotation	processor.
variant.getAnnotationProcessorConfiguration().resolutionStrategy	{	...	}	}	}	android	{	applicationVariants.all	{	//	Returns	configuration	objects	for	variant	compilation.	compileConfiguration.resolutionStrategy	{	//	Use	the	Gradle	ResolutionStrategy	API	//	to	configure	how	this	option	resolves	dependencies.	...	}	//	Returns	the	configuration	objects	of
the	runtime	variant.	runtimeConfiguration.resolutionStrategy	{	...	}	//	Returns	the	configuration	variant	of	the	annotation	processor.	annotationProcessorConfiguration.resolutionStrategy	{	...	}	}	}	When	building	an	application	using	AGP	4.0.0	and	later,	the	plug-in	contains	metadata	describing	the	dependencies	of	the	libraries	compiled	into	your
application.	When	your	app	loads,	the	Play	Console	examines	this	metadata	to	alert	you	to	known	issues	with	the	SDK	and	dependencies	your	app	uses	and,	in	some	cases,	provide	feedback	on	how	to	fix	those	issues.	The	data	is	compressed,	encrypted	with	Google	Play's	signing	key,	and	stored	in	your	published	app's	signature	block.	For	a	safe	and
pleasant	user	experience,	we	recommend	keeping	this	dependency.	However,	if	you	do	not	want	to	share	this	information,	you	can	opt	out	by	including	the	following	dependenciesInfo	block	in	your	module's	build.gradle	file:	android	{dependenciesInfo	{	//	Disable	dependency	metadata	when	building	an	APK	file.	includeInApk	=	false	//	Disable
dependency	metadata	when	creating	an	Android	app	bundle.	includeInBundle	=	false	}	}	For	more	information	on	our	policies	and	potential	dependency	issues,	visit	our	support	page	on	using	third-party	SDKs	in	your	app.	Appendix.




