

New Indian Environmental Norms:

How advanced DeSO_x solutions guarantee a sustainable power generation

Dr. Annette Ziemann-Noethe Dipl.-Ing. Frank Oberheid Dipl.-Ing. Christian Demling

Doosan Lentjes

Table of Contents

- New Indian Environmental Norms
- Solutions for Desulphurization Processes
- Requirements of the Indian Market
- Unique Features of the Different
 - **Technologies**
 - Tailor-made solutions for the different processes:
 - Wet Lime / Limestone FGD
 - Circoclean® FGD / FGC
 - Seawater FGD

Doosan Lentjes

EEC 2016: DeSO_x Technologies to meet new Indian Environmental Norms

Emission Norm India for Thermal Projects installed

EEC 2016: DeSO_x Technologies to meet new Indian Environmental norms

Solutions for Desulphurization Processes: Doosan Lentjes' APC Products –

- Wet Lime / Limestone FGD
- 205 absorbers installed (110 absorbers in China) (DHI: additional 19 absorbers, 10.7 GW_e installed)
- 71 GW_e total capacity
- Maximum absorber size: 1,000 MW_e
- Seawater FGD
- 14 absorbers installed (7 absorbers in cooperation with DHI)
- 8 GW_e total capacity
- Maximum absorber size: 700 MW_e
- Circoclean® FGD / FGC
- 88 reactors installed (18 reactors in China, 26 in the USA, 2 in cooperation with DHI)
- 13 GW_e total capacity
- Maximum reactor size: 305 MW_e

Contract award: 2006 Project: Flue gas desulphurisation plant retrofit Main fuel: Coal Plant output: 1 x 500 MW_e Max. flue gas flow rate (wet): 2,103,000 Nm³/h

Our Products and Services

Boiler Business Group

Lentjes Business Unit

Boiler Business

Unit

Babcock

Business Unit

Waste-to-Energy Air Pollution

Control

Doosan Lentjes is the global center of competence for CFB, WtE and APC in DHI and has its own R&D center for these technologies

Doosan Lentjes

Our Product Lines — CFB, WtE and APC

FGD Technology – Origin

2011 – Acquisition by Doosan	Doosan Lentjes GmbH	
2007	AE&E Lentjes GmbH	
2004	Lentjes GmbH	
2004	Lurgi Lentjes AG	
2002	Lurgi Energie und Entsorgung GmbH	
1998	Lurgi Lentjes Bischoff GmbH	Dry FGD
1996	Lentjes Bischoff GmbH	
1984 – Acquisition by Lenties	Gottfried Bischoff GmbH & Co. KG	Wet FGD
1910 – Foundation	Gottfried Bischoff GmbH & Co. KG	

Comparison of FGD processes

Description	Unit	Circoclean® FGD/ FGC	Seawater FGD	Wet Limestone FGD
Suitable for high sulphur	mg/Nm ³	Not economic	Only with additional additives or fresh seawater	yes
SO ₂ removal efficiency	%	>99	>99	>99
SO ₃ removal efficiency	%	>99	approx. 50%	approx. 50%
Absorbents	-	lime	seawater	limestone/lime
Investment cost	%	70-80	70-80	100
Power consumption	% in PP capacity	1-1.5	0.8-1.5	1-2
Maintenance	%	80	30	100
Absorbents costs	%	200	0	100
By- product	-	dry calcium sulfite/ calcium sulfate mixture	sulfate ions (dissolved in seawater)	gypsum
By- product costs	-	high disposal costs	none	saleable (low price)

Doosan Lentjes

Basic Flow Sheet

Excellence in 9

Modules

EEC 2016: DeSOx Technologies to meet new Indian Environmental norms

Why to prefer our proven Wet Limestone FGD technology?

- New-build and retrofit
- Size: up to 1,000 MW_e and even more
- Application for a wide range of fuels: coal, lignite, heavy fuel oil
- Suitable for:
- High sulphur applications
- Large scale power plants

Case Study: Taichung, Taiwan

Contract award: 1993 Project: Provision of a limestone FGD plant on a turnkey basis Main fuel: Coal Plant output (unit 1-4): 4 x 550 MW_e Max. flue gas flow: 2,150,000 Nm³/h

Doosan Lentjes

Overall Reactions

Product: Gypsum

Requirements of the Indian Market

Requirements	
	Reliable and proven FGD technology ensured by reference plants
	Optimized design regarding Capex and Opex
	Minimized water consumption, limited waste water
	Small and optimized plant footprint especially for retrofit projects
	Short erection period, short shut down periods
	Regarding retrofit projects: relining of chimney and installation of booster fan

Key Project Data Rugeley

Customer	International Power plc
Location of power station	Rugeley, Staffordshire, UK
Award date	2006
Gross power generation (per unit)	500 MW _e
Number of units	2
Maximum flue gas flow rate (wet)	2,103,000 m³/h (STP)
Maximum S content in coal	1%
Maximum SO ₂ inlet concentration	2,076 mg/m ³
Guaranteed emissions (acc 6% O2, dry)	
So ₂ remocal efficiency	94%
Particulate matter	25 mg/m³ (STP)
Waste water	10.5 m³/h

EEC 2016: DeSOx Technologies to meet new Indian Environmental Norms – DL Reference Plant in Rugeley

Precise and Accurate Design Calculation: Doosan Lentjes Software Tool

Consideration of all chemical and physical processes and interactions
Validated by all performance data documented in the extensive database for all Doosan Lentjes reference plants
Precise calculation of plant dimensions regarding correlation of Capex and Opex
 Consideration of all key design parameters: Limestone reactivity Limestone particle size distribution Organic acid dosage Position of spray level in operation Absorber height Temperature of suspension Chloride concentration Absorbent droplet size Effect of SO₂ and CO₂ concentration on mass transfer

Optimized Design regarding Capex and Opex

Optimized Design regarding Capex and Opex

Integral consideration of L and H

 \rightarrow Reduction total lifetime costs

Doosan Lentjes

Minimized Water Consumption

Minimizing of water evaporation by installing highly efficient gas gas heater and minimizing raw gas temperature before absorber
Use of cooling water (SW) as process water
FGD plant operation with no waste water by injection of residual water before ESP
Installation of a waste water evaporator – highly expensive
For power plants located in coastal areas the installation of SW FGD plants, where no additive or fresh water is used, has advantages.
For FGD plants with a capacity of up to 350 $\rm MW_e$ the installation of the dry Circolclean® FGD plants has a lower water consumption

EEC 2016: DeSOx Technologies to meet new Indian Environmental Norms

Use of Cooling Water (SW) as Process Water

Challenges by use of seawater as process water

Commercial grade gypsum is produced in all plants.

The chlorine content in the absorber is higher than in the case of using fresh water: 40,000 ppm instead of 20,000 ppm.

Wearing of balls for the wet ball mill is higher.

Amount of bleed waste water is higher.

Chlorine content has a negative impact on removal efficiency (higher L/G to reach the same removal efficiency means higher power consumption).

For saturation of oxidation air and for gypsum washing material selection (absorber, mill, process water system) has to be suitable for the high chlorine content.

Desalinated water is required for gypsum washing. (range: 2-5% of total water consumption)

I. Doosan Lentjes WLST-FGD plant in Rostock (510 MW_e) with seawater used as process water. II. Power Station Almeria, 550 MWe, Spain, Mediterranean Sea III. Power Station Iskenderun, 2 x 606 MWe, Turkey, Mediterranean Sea

Spray Tower Design

Mist Eliminators

Spraying Zone

 Sump equipped with Impulse Suspending System

Sump Design

Special advantages only available with Doosan Lentjes' Sump System

- Suspends the solids without moving parts within the absorber
- Two different zones for oxidation and crystallization
- Better utilization of consumables
- Higher quality of gypsum
- Trouble-free restart of IS-system after FGD shut-down
- No need to operate Impulse Suspension System during shutdown

Aspects Regarding the Choice of Fan for Wet FGD Systems

- Combined ID Fan
- State of the art solution for new-build power plants
- References available
- Simpler control loop for flue gas flow
- Reduced danger of flue gas pressure oscillation, smooth operation
- Investment cost saving
- Booster Fan dedicated to FGD
- Preferred for retrofit projects
- No adaption of existing ID fan means reduced tie-in period
- Better efficiency during bypass-operation

Aspects Regarding the Choice of Type of Chimney Chimney Design and Material Selection

- Common stand-alone chimney with one or more flues possible
- Wet stack may also be built on top of absorber
- Existing chimney may be used as FGD by-pass
- In case existing chimney will be modified and reused, stand-still period has to be considered
- Material selection for flue:
 - Carbon steel with flake lining
 - Carbon steel with rubber lining
 - FRP
 - Acid resistant bricks
 - Alloy material

Customer Benefits

- A simple solution to remove SO₂, HCI and HF
- SO₂ removal efficiency up to 99%
- Almost stoichiometric absorbent consumption
- Spray tower absorber not susceptible to clogging due to patented Impulse Suspension System
- Individual spray levels can be switched off during low load or low sulphur fuel operation to reduce power consumption
- Variety of corrosion resistant materials available for absorber design
- A high-quality gypsum is created as a byproduct which has manifold uses

Case Study: Dolna Odra, Poland

Contract award: 1999 Project: Provision of a flue gas cleaning plant for boilers 7+8 Main fuel: Coal Plant output: 1 x 220 MW_e Max. flue gas flow

(wet): 1,926,000 Nm³/h

Doosan Lentjes

Doosan Lentjes' Capabilities at a Glance

- More than 40 years of experience with FGD technology
- Three different FGD technologies available
- Worldwide proven technology is own IP of Doosan Lentjes
- High number of references for all FGD technologies
- Experience with seawater as process water (WLST FGD)
- Continuous intensive R&D in own laboratory
- In-house CFB modelling

Wet Lime / Limestone FGD Plant References

Location Customer Capacity Fuel

Location Customer Capacity Fuel

Location Customer Capacity Fuel Fiddler's Ferry, UK Scottish and Southern Energy 3 x 500 MW_e Hard coal

Ferrybridge, UK Scottish and Southern Energy 2 x 500 MW_e Hard coal

Rugeley, UK International Power plc 2 x 500 MW_e Hard coal

Wet Lime / Limestone FGD Plant References

Location Customer Capacity Fuel

Location Customer Capacity Fuel

Location Customer Capacity Fuel Oroszlány, Hungary Vertes Power Plant Limited 1 x 240 MW_e Lignite

Lippendorf, Germany Vattenfall / EnBW 2 x 933 MW_e, 4 absorbers Lignite

Cayirhan, Turkey TEAS 2 x 150 MW_e Lignite (extreme high sulphur)

EEC 2016: DeSOx Technologies to meet new Indian Environmental norms

Circoclean® FGD – Basic Flow Sheet

EEC 2016: DeSOx Technologies to meet new Indian Environmental norms

Why to prefer our proven Circoclean® technology?

- New-build and retrofit
- Power stations and waste-to-energy plants
- **Size:** up to 350 MW_e and even more
- Wide range of fuels: coal, lignite, heavy fuel oil, municipal and industrial waste
- SO₂, SO₃, HCI, HF removal efficiency up to 99% and more
- Usage of hydrated lime as additive
- Hydration of burnt lime on site possible
- Usage of limestone in fuel, calcined in upstream CFB boiler
- Removal of PCDD, PCDF and heavy metals with optional activated carbon injection

Case Study: Cochrane, Chile Contract award: 2014 Project: Engineering, manufacture and supply of dry FGD system Main fuel: Hard coal Plant output: 2 x 250 MW_e Flue gas flow (wet): 2 x 857,000 Nm³/h Doosan Lentjes

Overall Reactions

Main reactions, significant for the flue gas desulphurisation in the fluidised bed

 $Ca(OH)_{2} + SO_{2}$ 2 CaSO₃ * $\frac{1}{2}$ H₂O + O₂ Ca(OH)₂ + SO₃

CaSO₃ * $\frac{1}{2}$ H₂O + $\frac{1}{2}$ H₂O 2 CaSO₄ * $\frac{1}{2}$ H₂O CaSO₄ * $\frac{1}{2}$ H₂O + $\frac{1}{2}$ H₂O

Additional reactions with chlorides and fluorides

Ca(OH)₂ + 2 HCI Ca(OH)₂ + 2 HF CaCl₂ * 2 H₂O CaF₂ * 2 H₂O In case of usage of activated carbon adsorption of: PCDD, PCDF and Heavy Metals Parallel reaction with CO₂, forming limestone Ca(OH)₂ + CO₂ CaO hydrated in a dry hydrating plant on site CaO + H₂O Ca(OH)₂

Circoclean® FGD / FGC Plant Design

Circoclean® Reactor (1)

Filter (2)

Venturi Nozzle (3)

Multiple Venturi Nozzle (Flow > 400,000 Nm³/h)

Inlet View

Outlet View

Customer Benefits

- Moderate process water consumption
- Small power consumption
- Small foot print
- No waste water dry particles only
- High SO₃ removal
- No flue gas re-heating
- Reactor made of carbon steel
- Easy adoption to higher SO_x removal
- Attractive investment costs

Case Study: laşi, Romania Contract award: 2014 Project: Delivery of key Circoclean® FGD technology Main fuel: Lignite Plant output: 1 x 50 MW_e

Flue gas flow (wet): 623,500 Nm³/h

Doosan Lentjes

Low Pressure Pulse Jet Fabric Filter downstream Circoclean® FGD / FGC Reactor

Customer Benefits

- Far less than 10 mg/m³
- Independent from boiler load
- DeSO_x effect in ash layer on filter bag
- Furnace sorption injection or CFB installation possible
- Relatively low investment costs
- Higher life time of filter bags

EEC 2016: DeSOx Technologies to meet new Indian Environmental norms

Typical Layout

- Product Silo (1)
- Sorbent (Lime) Silo (2)
- Absorber (3)
- Fabric Filter (4)
- Absorber Inlet (5)
- Electrical Building (6)

Doosan Lentjes

Page 36

Key Project Data Cochrane

Customer	AES/ Empresa Eléctrica Cochrane (EEC)
Location of power plant	Mejillones, Chile
Award date	2014
Main fuels	hard coal
Gross power generation	2 x 250 MW
Flue gas flow rate	2 x 857,000 m³/ h (STP, wet)
DeSO _x - technology	Circoclean® FGD
Number of lines	2
SO ₂ inlet concentration	1865 mg/ Nm ³ dry @ 6% O ₂
Dust inlet concentration	21,100 mg/ Nm ³ dry @ 6% 0 ₂
Guaranteed emissions SO ₂ SO ₂ removal efficiency Dust Dust removal efficiency	200 mg/ Nm ³ dry @ 6% O ₂ 88.6% 30 g/ Nm ³ dry @ 6% O ₂ 99.85%

+

Printing and

Circoclean® FGD Plant References

Location Customer Capacity Fuel

Location Customer Capacity Fuel

Location Customer Capacity Fuel Moneypoint, Ireland Electricity Supply Board (ESB) 3 x 305 MW_e Hard coal

Plzen, Czech Republic Plzeňská Teplárenská a.s. 3 x 35 Mw_e – 1 reactor Lignite

Usti nad Labem, Czech Republic SETUZA Cinergetika U/L, a.s. 1 x 65 MW_e Lignite

Circoclean® FGC Plant References

Location Customer Capacity Fuel

Location Customer Capacity Fuel

Location Customer Capacity Fuel Antwerp, Belgium Indaver N.V. 3 x 105,000 Nm³ / h Municipal and industrial waste

Allington Kent Enviropower 3 x 100,000 Nm³ / h Municipal waste

Frankfurt am Main, Germany AVA Nordweststadt 4 x 114,000 Nm³ / h Municipal waste

SWFGD - Background

Typical Flow Sheet – Example: Open Spray Tower

EEC 2016: DeSOx Technologies to meet new Indian Environmental norms

Types of SWFGD Absorbers

- Influencing factors on product selection
 - SO₂ raw gas content
 - Required SO₂ removal efficiency
 - Seawater quality , e.g.:
 - Temperature
 - pH value
 - Alkalinity
 - Focus on:
 - Capex
 - Opex
 - Hybrid solution

Field Study at Gheco One Power Plant Validation at full size Power Plants

Verification of models and experimental results

Absorber Type: Open Spray Tower

No. of spray levels:

No. of oxidation air blowers: 2+1 standby

Maximum SO₂ concentration (Raw Gas):

~2700 mg/Nm³

Δ

SO₂ removal in absorber

• Flue gas grid measurements under different operating conditions

pH increase and oxidation in aeration basin

• Seawater measurements under different operating conditions

Flow optimization

 Pressure drop measurements under different operating conditions

Page 44

EEC 2016: DeSOx Technologies to meet new Indian Environmental norms

Field Study at Gheco One Power Plant

(25 measuring points)

(24 measuring points)

(20 measuring points)

Flue Gas Grid Measurements

Measuring grids

- Raw gas upstream GGH
- Clean gas upstream GGH
- Clean gas downstream GGH

Measured values

- SO₂-concentration
- O₂-concentration
- CO₂-concentration
- H₂O-concentration
- Flue gas temperature
- Static pressure
- Flue gas velocity
- A different number of spray pumps (4, 3, 2) were in operation
 - 6 test runs were executed

Field Study at Gheco One Power Plant Flue Gas Grid Measurements

- Results (selected data)
 - Coal with less sulphur content than planned is fired
 - SO₂ removal efficiency of ≥99% can be reached
 - SO₂ removal efficiency between ≥ 93.5% and ≥99% were measured depending on number of operated spray banks and height of operated spray bank
 - The emission limits were upheld under all operating conditions
 - Homogeneous distribution of SO₂ at stack
 - Result of flow optimization
 - The expected calculated values were reached
 - Validation of experimental and modelled results successful
 - New operation concept
 - <u>Customer benefits</u>: Reduction of power consumption under current operating conditions

Field Study at Gheco One Power Plant

Seawater Measurements

- Measurements in aeration basin in parallel to flue gas grid measurements
- Measured values at 12 measuring points (selected values)
 - pH Value
 - Alkalinity
 - Dissolved Oxygen [DO]
 - SO₃²⁻ concentration
 - Čhemical Oxygen Demand [COD] increase
 - Salinity
 - Conductivity
 - Temperature
 - Seawater Velocity
- Different number of oxidation air blowers (1, 2) were in operation
 - Influence on performance of aeration
- Different number of absorber spray pumps (2,3,4) were in operation
 - Influence on seawater inlet quality to aeration basin
- 12 test runs

Doosan Lenties

Page 48

Field Study at Gheco One Power Plant

Seawater Measurements

- Results (selected data)
 - Correlation between pH value and SO₂ removal efficiency (basin Inlet pH value)
 - Higher SO₂ removal efficiency → Lower aeration basin inlet pH value
 - All emission limits are kept under all operating conditions
 - pH-value and DO increase faster, when more air is brought into aeration system
 - The expected calculated values were reached
 - Validation of experimental and modelled results successful
 - New operation concept
 - <u>Customer benefits:</u> Reduction of power consumption under current operating conditions

Aeration Elements

EEC 2016: DeSOx Technologies to meet new Indian Environmental norms

Why to prefer proven SWFGD technology?

- Cost effective solution for plants in coastal regions:
 - Seawater is used as an absorbent
 - Seawater typically taken from the power plants cooling circuit
- Size: up to 1,000 MW_e and higher
- Application for a wide range of different fuels:
 - coal
 - lignite
 - heavy fuel oil
- Applicable for a wide range of SO₂ raw gas concentrations
- High level of removal efficiency, ≥ 99% possible
- No by-product and no additional absorbents necessary
- Low operating and capital costs

Rabigh, Saudi Arabia 4 x 700 MW_e , heavy fuel oil

SWFGD Plant References

Location Customer

Capacity Fuel

Location Customer Capacity Fuel

Location Customer Capacity Fuel Vinh Tan Vietnam National Coal – Mineral Industries Holding Corp. Ltd. 2 x 620 MW_e Hard coal

Rabigh, KSA Doosan Heavy Industries & Construction 4 x 700 MW_e HFO

Gheco One, Thailand Doosan Heavy Industries & Construction 1 x 700 MW_e Hard coal

SWFGD Plant References

Location Customer Capacity Fuel

Location Customer Capacity Fuel

Location Customer Capacity Fuel Qatalum, Qatar SNC Lavalin 4 units Aluminium smelter gas

Madinat Yanbu, KSA Enel Power 1 x 130 MW_e HFO

Paiton, Indonesia Siemens 2 x 660 MW_e Hard coal

Questions?

Annette Ziemann-Nöthe

Dr. rer. nat. Product Manager WLST/Seawater FGD **Doosan Lentjes GmbH**

Daniel-Goldbach-Str. 19 40880 Ratingen, Germany T +49 (0) 2102 166 1492 F +49 (0) 2102 166 2492

www.doosanlentjes.com

annette.ziemann-noethe@doosan.com

Thank you धन्यवाद ! Danke

Backup

- Save flue gas desulphurization processes reduce SO₂ emissions to a minimum according to new Indian environmental norms
- Provision of complete clean gas packages from boiler to stack (SO_x, NO_x, PM, Hg)
- Clean and efficient power generation from coal and biomass support a sustainable long-term growth of the Indian economy
- Reliable waste-to-energy solutions help India reduce its waste volumes (>90%) while recovering valuable energy

Indian's Powerful German Engineering and Technology Partner - for Protection of the Environment

Doosan Lenties

