Get Ready for Flexible Power Plant Operation

Learnings from the Projects under the Auspices of the Indo-German Energy Forum

vgbe energy e.V. – Who We Are

- 437 members in 33 countries
- Members represent an installed renewable and conventional capacity of 302 GW

vgbe is the International Technical Association of energy plant operators. Founded in 1920, the association covers a wide range of technologies: from renewable and conventional power and heat generation to energy storage and P2X.

Background and Working Programm

A special Task Force on Flexibilisation was constituted in May, 2016 under the Sub-Group of the Indo-German Energy Forum, under the Chairmanship of Director (Operations), NTPC and with following members:

- India: Excellence Enhancement Centre (EEC) Task Force Secretariat, POSOCO, CEA, BHEL and NTPC
- Germany: IGEF/GIZ, VGB and KWS (Power Plant Training Centre)

Technical Study

- Reference plant assessements at Dadri und Simhadri, 2017
- Flexibility Toolbox, 2018
- Test Runs in different power plants 2018–2022
- Implementation of measures at Dadri, finished in 2022
- Verification of results →
 Flexibility Field Report, to be
 published in January 2023

Capacity Building

- > 200 Indian delegates visited Germany for training, study tours and experience exchange
- > 15 National conferences, seminars and workshops
- Development of a flexibility simulator and training programme for power plant personnel

Framework

- Study on current market design in India
- Regular experiences exchange with CERC

Technical Flexibility Parameters

	Dadri Unit 6	Maithon Unit 2	Andal Unit 2
Capacity	500 MW	500 MW	500 MW
Operator	NTPC	Tata	DVC
Date	June 2018	July 2021	April 2022
Minimum Load	40%	36%	30%
Ramp Rate	2.0 –3.0%/min	1.5– 2.0%/min	2.0%/min

Flexibility Test Runs at 500 MW Units

Way to Steady Flexible Operation: Technical Dimension

How to flexibilize the plant

Pre-Test Phase

Initial Plant Assessment **Test Run**

Flexible operation check

Flexbilization Plan

Concept for steady flexible operation

Deployment

Implementation of flexibility measures

Learnings and Recommendations

- Conduct own test runs to in order to enhance your knowledge about the plant behaviour in part load
- Collect your own best practices e.g. for start-up, shut-down, mill scheduling and frequency control and identify new procedures for your plant
- An automized start-up and shut-down sequence of main equipment is beneficial for flexible operation → check, if your DCS system has such sequences which were never commissioned
- Develop a concept for condition monitoring in order to mitigate the consequences of flexible operation
- Simulator training is very useful to obtain practical skills in flexible operation as well as to try out different operational concepts

Way to Steady Flexible Operation: Skill Dimension

Study

e-learning, awareness workshops and professional seminars

Target: acknowledge the need for flexibility, understand principles of flexible power plant operation

4 weeks

Try

- a) Simulator training to try out flexible operation at an Indian reference plant
- b) Test runs at own plant (according to IGEF procedure) guided by own senior or external experts

4 weeks

Apply

Implement new procedures in the operational scheme (e.g. mill sequences, switch over of pumps and fans)

- Increase level of automation for routine sequences and optimize subordinate controls
- Optimize main control loops and implement advanced control solutions

Continuous improvement process

Simulator Training for Flexperts

- Online-Trainings to conceptualize future courses
- In co-operation with KWS
- Remote training with simulator located in Germany
- One-week program based on a blended learning approach
- Local infrastructure placed in Steag's facilities

Bridging time
Create learnings

Simulator

What About You?

www.arsnova.thm.de/3

Room Number: 5365 7688

What About You?

Development of Power Plant Technology Drivers

Options for Hybridization of Power Plants

Renewable Energies

Capacity extension with PV and/or wind energy plants

Sector Coupling

From heat and steam provision to the integration of H₂ production and CCUS as well as the production of green gases and/or biofuels

Storage

Source of picture: Steag GmbH

storage systems
such as large scale
batteries as well as
thermal and
mechanical storage

Integration of

Fuel Blending

Partial fuel substitution with biomass or green gases

Decarbonization and other Benefits through Hybridization

Renewable Energies

direct impact through carbon-free generation

- efficient use of existing infrastructure and space
- diversification of generation portfolio

Storage

 indirect impact through enhanced flexibility of the site

additional income through new services, e.g., primary frequency control, heat and steam provision

Sector Coupling

- Heat: direct impact through higher overall plant efficiency
- H₂ production: indirect impact, enhancing flexibility by adjustable demand, provision of fuel to decarbonize other sectors
- CCUS: direct impact through reduced CO₂ emissions
- Green gases/biofuel: indirect impact, provision of fuel to decarbonize other sectors

 additional income through new products, particularly suitable for captive power plants or plants close to industrial sites

Fuel Blending

 direct impact through reduced carbon emissions

cost-effective measure w/o compromising the plant performance

Thank you for your attention.

be energized

be inspired

be connected

be informed

Contact

Dr.-Ing. Claudia Weise Project Director of International Affairs

vgbe energy e.V.

Deilbachtal 173, 45257 Essen

Germany

M +49 151 2524 8343

E <u>claudia.weise@vgbe.energy</u>

I www.vgbe.energy