

Grosskraftwerk Mannheim AG

GKM – Operating a coal fired CHP-power plant in an urban area

Dr.-Ing. Matthias Meierer

Flexibility-Workshop / VGB Power Tech - IGEF-Study-Tour

September 19, 2016 in Berlin

1

Contents

- 1. Introduction / GKM Power Plant
- 2. Actual situation in Germany ("Energiewende")
- New GKM heat storage system / optimization of CHP Process
- 4. Conclusions

GKM history: the beginnings

1921

GKM is founded on 8th of November

Start of construction work at a good location: close to town of Mannheim and directly sited at river Rhine; start of electricity generation in 1923 Mastermind: Dr. Karl Friedrich Marguerre, Executive Direktor

GKM – founded 1921 … new unit 9 in erection …

4

GKM plant today

CHP process (combined heat and power) in GKM

GKM power generation (electricity)

TWh

GKM district heat generation

| 7

efficient generation of electricity and district heat

energy for share holders and German Railway: reliable, cost-effective and friendly to environment

50 Hz three-phase alternating current (share holders of GKM AG)

RWE Generation SE **(40 %)** EnBW AG **(32 %)** MVV RHE GmbH **(28 %)** 16.7 Hz single-phase alternating current

DB Energie GmbH (German Railway) **District heat**

MVV RHE GmbH Mannheim

GKM plant in 2016

9

GKM plant: Installed capacity: 2.146 MW_{el} (units 6,7,8,9)

GKM plant overview

VGB IGEF Flexibility-Workshop September 19, 2016 Berlin GKM CHP-Power Plant Dr. Meierer

flow sheet of GKM unit 6 (CHP)

new unit 9

CKM **Energy for Mannheim** and the Region

VGB IGEF Flexibility-Workshop September 19, 2016 Berlin GK

GKM CHP-Power Plant

| 13

unit 9 - flow sheet

combined heat and power unit 9 (CHP)

14

VGB IGEF Flexibility-Workshop September 19, 2016 Berlin GKM CHP-Power Plant Dr. Meierer

unit 9

facts and figures

Commissioning/start of commercial operation	1 st May 2015
Investment volume	1.2 bil. €
Gross output	911 MW _{el}
Electrical net efficiency	46.4 %
District heat generation with CHP	max. 500 MW _{th}
Fuel utilization for CHP	max. 70 %
Railway electricity (16.7 Hz) (per transverter)	100 MW

16

Contents

- 1. Introduction / GKM Power Plant
- 2. Actual situation in Germany ("Energiewende")
- New GKM heat storage system / optimization of CHP Process
- 4. Conclusions

electricity generation / actual situation in Germany (example)

remarkable export of electricity from Germany to neighbour countries during high generation of solar and wind power

17

GKM / daily operation situation 2007 vs. today

today's requirements in electricity market mean high demands on equipment and personell in GKM: high flexibility in load changes and timing

GKM / unit 8 load diagram (example)

| 19

GKM / start up diagrams of unit 8

VGB IGEF Flexibility-

Flexibility-Workshop September 19, 2016 Berlin

GKM CHP-Power Plant

Contents

- 1. Introduction / GKM Power Plant
- 2. Actual situation in Germany ("Energiewende")
- New GKM heat storage system / optimization of CHP Process
- 4. Conclusions

Mannheim district heat system / GKM CHP Plant

GKM Plant / district heat system until 2013

GKM "2-units-operation" necessary at minimum load because of need for secure supply of district heat system (until end of 2013)

CHP plants in Germany / need for energy storage

In energy supply systems for heat and power energy storage sytems help to bring **energy consumption and energy generation into balance**

Actual need for higher and more energy storage capacities in Germany:

- increasing capacities of "renewables" (esp. solar (PV) and wind) for power (electricity) and heat supply
- combined heat and power plants (CHP) "struggle with economics": low EEX-prices for electricity and "must run production of electricity" because of need to produce heat continuously

energy storage systems / thermal storage

Thermal energy storage: heat storage: worldwide use of different types in large scale

- different substances (e.g. water, salts, sand, concrete, aquifer, ...)
- different temperature / pressure
- different technical types / functions
- integrated in different systems e.g. power plants; CHP; district heat systems; local heat systems, industrial systems, ...
- activities in research and development: to develop systems with higher capacities (MWh, MW) and improvement of the technical systems
- focus: better integration of renewables in existing energy supply systems (heat and power)

heat storage systems / overview

thermal storage systems / water not pressurized

Water energy storage systems / <u>not</u> pressurized: worldwide use since long time in power plants, industry, and heating systems

- simple constructions / different types / easy to integrate in power plants
- storage system type "Dr. Hedbäck" >80 tanks worldwide, most in Europe and South Korea
- water system (well known)
- positive long time experiences
- limited temperature level (<100 ° C), atmospheric pressure, high volumes (up to 50,000m³ per tank) and capacities (up to 300 MW, up to 1500 MWh)
- reasonable investment costs (depending on system integration demand)

heat storage systems / conclusions

- thermal energy storage (heat): worldwide use of different types in large scale
- water is most common storage substance (easy to handle, cheap, not corrosive, high heat capacity, friendly to environment, ...)
- research and developement for other storage substances (e.g. salts, sand, concrete, aquifer, metals, ...) and process optimization ongoing
- better integration of renewables and other sources (e.g. waste heat) in existing energy supply systems (heat and power) needed
- focus: energy storage systems with high capacities (MW, MWh), high load flexibility and gradients
- actual: difficult commercial conditions for large storage systems and installations

task / functions of new GKM heat storage system

Load demands on CHP Plant GKM

- 50 Hz Electricity Generation for RWE, EnBW, MVV
- 16,7 Hz Electricity Generation for DB Energie
- Distric Heat Generation and secure supply of Mannheim, Heidelberg and Speyer

Situation at German Eletricity Market

• GKM Plant Load corresponding to EEX Prices (Spot-Market "day-ahead and intraday"): volatile and often not fitting to district heat energy consumption

Functions of new heat storage system in GKM

- in times of low EEX Prices the GKM Electricity Generation must be as low as possible (minimum technical load)
- the new heat storage tank enables GKM to operate only 1 unit during minimum load (instead of 2 units before)
- during minimum load the heat content in the tank is sufficient to supply the district heat nets at least for 2 hours
- additionally the heat storage tank is used to optimize the plant operation depending on EEX Prices (e.g. charging at night, discharging by day)

GKM Plant / district heat system since 2015

GKM "1-unit-operation" possible at minimum load / if district heat load < 250 MW (since heat storage system finished: end of 2013)

new heat storage system enables GKM CHP plant to reduce the minimum load significantly

VGB IGEF Flexibility-Workshop September 19, 2016 Berlin

GKM CHP-Power Plant

GKM water heat storage system / not pressurized

heat storage tank / integration district heat system

GKM new heat storage tank and system

GKM Plant / location for new heat storage tank

technical data GKM heat storage system

Heat storage tank ("system Dr. Hedbäck")

diameter tank	m	40
cylindric height tank	m	36
storage capacity	m³	43.000
max. flow to / from tank	t/h	6.200
max. storage water temperature	°C	98
effective heat storage capacity	MWh	1500
max. load (water flow)	MW	250

heat storage tank / beginning of mantle erection (floor already finished, January 2013)

heat storage tank / built by "spiral method" (roof already finished, March 2013)

heat storage tank / "spiral method" (April 2013)

heat storage tank / "completely welded" (during water pressure test in June 2013)

heat storage tank / heat insulation of mantle (September 2013)

heat storage sytem / building for pumps, piping and heater in erection (July 2013)

heat storage system / new district heat lines DN900 supply and return lines in erection (July 2013)

GKM heat storage tank completed (September 2013)

VGB IGEF Flexibility-Workshop September 19, 2016 Berlin

operation of heat storage tank (7 days, example)

energy content [%]

45

Contents

- 1. Introduction / GKM Power Plant
- 2. Actual situation in Germany ("Energiewende")
- New GKM heat storage system / optimization of CHP Process
- 4. Conclusions

GKM / reduction of minimum load 2005 vs. today

Minimum load GKM

VGB IGEF Flexibility-Workshop September 19, 2016 Berlin

GKM CHP-Power Plant

Conclusions

Actual situation of CHP Plants in Germany / "Energiewende"

- increasing and high capacities of "renewables" (esp. solar (PV) and wind) for electricity generation with fixed and governmental garanteed compensation
- since more than 4 years constantly decreasing and volatile EEX Prices

Situation at GKM

- GKM Plant load corresponding to EEX Prices (Spot-Market "day-ahead and intraday"), production volume and operation hours of units are decreasing
- need for permanent Distric Heat Generation and secure supply of Mannheim, Heidelberg and Speyer
- combined heat and power plants (CHP) "struggle with economics"

Functions of new heat storage system in GKM

- new heat storage system enables GKM to operate only 1 unit during minimum load (instead of 2 units before)
- heat storage system is used to optimize the plant operation depending on EEX Prices (e.g. storage tank charging at night, discharging by day)

GKM Plant in Mannheim

Thank you for your attention.

WWW.GKM.de