MHPS’s State of Art AQCS Technologies for Indian Power Plants
New Environmental Regulation announced on 7th Dec 2015

<table>
<thead>
<tr>
<th>Capacity</th>
<th>TPP installed before 31 December 2003</th>
<th>TPP installed after January 2004 up to 31st December 2016</th>
<th>New install from 1st January 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smaller than 500MW</td>
<td>500MW & Above 500MW</td>
<td>Smaller than 500MW</td>
<td>500MW & Above 500MW</td>
</tr>
<tr>
<td>Smaller than 500MW</td>
<td>500MW & Above 500MW</td>
<td>Smaller than 500MW</td>
<td>500MW & Above 500MW</td>
</tr>
<tr>
<td>Smaller than 500MW</td>
<td>500MW & Above 500MW</td>
<td>Smaller than 500MW</td>
<td>Any Size</td>
</tr>
<tr>
<td>Particulate</td>
<td>100mg/Nm³</td>
<td>50mg/Nm³</td>
<td>30mg/Nm³</td>
</tr>
<tr>
<td>SO2</td>
<td>600mg/Nm³</td>
<td>200mg/Nm³</td>
<td>100mg/Nm³</td>
</tr>
<tr>
<td>NOx</td>
<td>600mg/Nm³</td>
<td>300mg/Nm³</td>
<td>100mg/Nm³</td>
</tr>
<tr>
<td>Mercury</td>
<td>-</td>
<td>0.03 mg/Nm³</td>
<td>0.03mg/Nm³</td>
</tr>
</tbody>
</table>

- The new regulation may require application of state of art technologies
- MHPS has enough experience to comply with severe requirements in Japan, and MHPS can supply reliable technologies to meet Indian regulation.
MHPS Delivered AQCS units all over the world

- SCR: 1,023 Units (20 Countries)
- ESP: 3,276 Units (32 Countries)
- FGD: 323 Units (26 Countries)

※2015年現在: SCR 1,023 Units (20 Countries), ESP 3,276 Units (32 Countries), FGD 323 Units (26 Countries)
Air Quality Control System (AQCS) for Coal Fired Plant

One-stop AQCS solution by MHPS
Latest MHPS SCR Technology
NOx control technologies

- Combustion Technology
 - OFA (Over Fire Air)
 - Gas Recirculation
 - Low NOx PM Burner (Pollution Minimum)
 - In-Furnace NOx Removal System (MACT)
- Post-Combustion Technology
 - Selective Catalytic Reduction (SCR)
 - Selective Non-Catalytic Reduction (SNCR)

NOx control technologies:
- SNCR
- MACT
- OFA
- PM Burner
- SCR
- AH

Catalysts:
- Honeycomb Catalyst
- Plate Catalyst
Harmful NOx is decomposed into harmless N2 and H2O by catalytic action.

\[
4\text{NOx} + 4\text{NH}_3 + \text{O}_2 \rightarrow 4\text{N}_2 + 6\text{H}_2\text{O}
\]
Typical System Configuration & Main Reaction

REACTION FORMULA

- \(4\text{NO} + 4\text{NH}_3 + \text{O}_2 \rightarrow 4\text{N}_2 + 6\text{H}_2\text{O}\)
- \(\text{NO} + \text{NO}_2 + 2\text{NH}_3 \rightarrow 2\text{N}_2 + 3\text{H}_2\text{O}\)
- \(6\text{NO}_2 + 8\text{NH}_3 \rightarrow 7\text{N}_2 + 12\text{H}_2\text{O}\)

NH\(_3\) injection → SCR Reactor → Catalyst → NO\(_x\) Analyzer

BOILER → ECO → Catalyst → \(\text{NH}_3\) Storage & Supply

STACK

© 2015 MITSUBISHI HITACHI POWER SYSTEMS, LTD. All Rights Reserved.
In-house ‘Knowledge’ and ‘Expertise’ built over 45+ years.
- Understand complete “Power Island”
- Understand gas path management
- Catalyst selection
- Catalyst management plan
- Proven track record (1,023 units)

Pioneers and patent holders for SCR systems and catalyst technology.
- (Plate & Honeycomb type)
Honeycomb/Plate Catalyst Type

- **Honeycomb Catalyst**
- **Plate Catalyst**

<table>
<thead>
<tr>
<th>Application</th>
<th>Dust Level</th>
<th>DeNOx Level</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal</td>
<td>Low</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>Gas</td>
<td>High</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil</td>
<td>High</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Cover all applications.**

Best selection of catalyst provides benefit on plant operation and maintenance costs.
Flue Gas Path Management

NH3 Distribution

- NH3 Profile
- Velocity Profile
- Large Particle Ash
- Ash Erosion
- Ash Accumulation

‘Flue Gas Path Management’

Flue Gas Flow Distribution

SCR Component

- Ammonia Injection Grid
- Static Mixer
- Turning Vane
- Rectifier (Flow Straightener)
- Duct, Ash Hopper
- LPA Screen
- Turning Vane
- Rectifier (Flow Straightener)
- Turning Vane
- Rectifier (Flow Straightener)
CFD Analysis

- Understand flue gas profile.
- Minimize gas angle entering SCR catalyst.
- Minimize velocity maldistribution at catalyst inlet.
- LPA (Large Particle Ash) simulation by CFD.

Cold Flow Model Test

- In-house capability of CFD analysis and cold flow model test.
- Minimize gas angle and velocity maldistribution by guide vane and rectifier (MHPS patented technology).
Latest MHPS Technology to Remove Particulate Matter
Low-Low Temp. ESP System
(High-performance System)

- Gas Temp. (deg.C): 130
- Dust Conc. (mg/m³N): 20,000
- Gas Temp. (deg.C): 90
- Dust Conc. (mg/m³N): 20,000

SCR: Selective Catalytic Reduction
A/H: Air Heater
GGH: Gas-Gas Heat Exchanger
DESP: Dry Electrostatic Precipitator
FGD: Flue Gas Desulfurization
1. **SO$_3$ removal**: SO$_3$ gas is condensed on fly ash
2. **Opacity reduction**: No plume caused by SO$_3$ mist at stack
3. **High PM removal performance at ESP**: Gas temperature reduction
4. **Water consumption saving at FGD**: Gas temperature reduction
Effect of Gas Temperature on PM Removal

- Decrease of ESP Inlet Gas Temp.
- Decrease of Dust Electric Resistant
- Decrease of Gas Volume
- Improve of ESP Performance

Effect of Gas Temperature on PM Removal:

- Low Low Temp. ESP System
- Conventional System

Graph showing the relationship between gas temperature and dust electric resistant for different coals (A and B).
Latest MHPS FGD Technology
Wet Limestone-Gypsum process ; DCFS-type Absorber

DCFS ; Double Contact Flow Scrubber

Single Tower DCFS

Twin Tower DCFS
Wet Limestone-Gypsum process; Open Spray-type Absorber

Spray Header

Spray Nozzles

Oxidation Agitator

Air Dispersion
Seawater FGD reference
Client: Tata Power Company Limited.
Plant: Trombay #8, India
Fuel: Coal
Capacity: 250 MW x 67%
Efficiency: 91%
Start-up: 2009
Build by BHEL (MHPS as subcontractor)

FGD License Agreement with BHEL
Agreed in April 2013

Signing Ceremony in Feb., 2013
Advantage of integrated design: ESP Downsizing

Separate Contracting

Supplier A

Boiler

ESP

Particulate matter conc. (mg/Nm³)

16,000

MHPS

DeSOx

Particulate matter conc. (mg/Nm³)

50

Approx. 20-25% Downsized by ESP+FGD dust removal function (for installation area)

Integrated Design

Boiler

ESP

Particulate matter conc. (mg/Nm³)

16,000

MHPS

DeSOx

Particulate matter conc. (mg/Nm³)

100 (*)

50 (*)

(*) AQCS system dust removal efficiency depends on coal type and dust particulate distribution. Considering dust removal performance at DeSOx, ESP can be downsized.

Overall system purchasing achieve …

- Installation cost and space decrease 10-20%.
- Prevention of trouble at the interfaces

(*) AQCS system dust removal efficiency depends on coal type and dust particulate distribution. Considering dust removal performance at DeSOx, ESP can be downsized.
Retrofit to Existing Boilers (SCR)

SCR Retrofit Project Outline

- Plant: Poland
- Fuel: Coal
- Plant Power: 220MW x 2
- DeNOx: 80%
- Slip MH3: 2 ppm
- Start up: U2 Oct. 2015
 - U1 Mar. 2016

Before installation

After Installation

- Boiler
- ESP
- SCR
- Reactor A
- Reactor B
Retrofit to Existing Boilers (FGD)

FGD Retrofit Project Outline

Plant: Poland
Fuel: Coal
Plant Power: 800MW
Inlet SO₂: 1,120ppm(d)
DeSOx: 93.75%
Start up: 2006

Newly installed single FGD treating flue gas from 4 boilers
MHPS technology to capture Mercury in AQCS
Form of vapor phase mercury (Speciation)

Elemental Mercury - Hg⁰
Oxidized Mercury - Hg⁺⁺

The form of mercury in the flue gas is critical to performance of emissions control systems.

- Elemental Mercury: Hard to remove from flue gas
- Oxidized Mercury: Easier to remove from flue gas (downstream ESP, FGD)

To achieve higher Hg removal, Hg oxidation is indispensable.
Mercury Removal Technology
~ Hg removal in TRAC® with NH₄Cl Injection~

SCR with higher Hg oxidation and lower SO₂ conversion (TRAC®)

NH₄Cl Injection for both NH₃ and Cl supply

Element Mercury (Hg⁰) is suppressed by controlling Oxidation-Reduction Potential (ORP)

ORP*: Oxidation-Reduction Potential

© 2015 MITSUBISHI HITACHI POWER SYSTEMS, LTD. All Rights Reserved.
Mercury Removal Technology
~ TRAC® Catalyst ~

Conventional

SO₂ Oxidation Rate

Low

High

Mercury Oxidation Activity

Low

High

- High De-NOx Activity
- High Mercury Oxidation Activity
- Low SO₂ Oxidation Rate

TRAC®
(High Mercury Oxidation Catalyst)

TRAC® = Triple Action Catalyst
Effects of TRAC™ and Gas Cooler on Hg Removal

US Bituminous Coal
Hg: 0.11mg/kg
In-house Test Facility

Conventional Catalyst
- 150°C
- 19.5%

TRAC™ Catalyst
- 90°C
- 75.0%
- 4.7%

Boiler
SCR
A/H
Gas Cooler
DESP
FGD
Stack