Thermal Power Plant

Perform Achieve Trade
Thermal Power Plants in PAT - I

- Total No of DCs = 144
- Threshold limit to be DC = 30,000 tons of oil equivalent (TOE) per annum
- Total Target Set = 3.1 MTOE
Thermal Power Plant Groups under PAT Scheme

Thermal Power Plants
[DC :144 Nos]

Coal/Lignite [97]
Gas [40]
Diesel [7]
Target Setting in TPPs

- Net Design Heat Rate

\[
\text{Net Design Heat Rate} = \frac{\text{Gross Design Heat Rate}}{1 - \text{APC\% operative}}
\]

- Net Operative Heat Rate

\[
\text{Net operative Heat Rate} = \frac{\text{Gross operative Heat Rate}}{1 - \text{APC\% operative}}
\]
Target Setting in TPPs

- Heat Rate Deviation (%)

Heat Rate Deviation (%) = \(\frac{(Operating \ Heat \ Rate - Design \ Heat \ Rate)}{Design \ Heat \ Rate} \times 100 \)

- Heat Rate Deviation

Heat Rate Deviation = (Operating Heat Rate – Design Heat Rate)
Net Heat Rate Target

Net Heat Rate = Gross Heat Rate / (1 - APC%)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Plant-1</th>
<th>Plant-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross HR (GHR)</td>
<td>2500 kcal/kWh</td>
<td>2500 kcal/kWh</td>
</tr>
<tr>
<td>APC</td>
<td>8%</td>
<td>10%</td>
</tr>
<tr>
<td>Net HR (NHR)</td>
<td>2717 (= 2500/0.92) kcal/kWh</td>
<td>2777 (=2500/0.90) kcal/kWh</td>
</tr>
</tbody>
</table>
Target Setting for Reduction of NHR

<table>
<thead>
<tr>
<th>Deviation in Net Station Heat Rate from Design Net Heat Rate</th>
<th>Reduction Target for Deviation in Net Station Heat Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 5 %</td>
<td>10 %</td>
</tr>
<tr>
<td>More than 5% and Up to 10 %</td>
<td>17 %</td>
</tr>
<tr>
<td>More than 10% and Up to 20%</td>
<td>21 %</td>
</tr>
<tr>
<td>More Than 20 %</td>
<td>24 %</td>
</tr>
</tbody>
</table>
Fuel Quality

Heating Value
N.C.V. = G.C.V. – 6(9H+M) kcal/kg
Hydrogen & Moisture by % weight.

Fuel Ratio
The fuel ratio means the weight ratio of fixed carbon to the volatile matter. Higher the fuel ratio of fuel, the poorer the ignitability and slower the combustion speed. It can be said the coal with fuel ratio 2-2.5 is preferable to lower unburned losses.
Volatile matter and calorific value ignitability evaluation of coal itself is generally performed in accordance with the volatile matter amount and the calorific value of coal. When volatile matter amount is less than 20% it is necessary to consider some methods to stabilize the ignitability.

Ignitability Index =

\[
\frac{\left(\text{Coal Calorific Value} \frac{\text{kcal}}{\text{kg}}\right) - 81 \times \text{(Fixed Carbon \%)}]}{(\text{Volatile Matter \%}) + (\text{Moisture \%})}
\]

When ignitability index is 35 or less, some measure for ignitability improvement should be taken.
Correction factor considered for effect on heat rate due to coal quality:

- Average "ash", moisture, and gross calorific value for the previous three years in case of baseline for first cycle and as per rule 14 for consequent cycles and specified year in case of target year, shall be taken into account for the baseline year and correction factor shall be worked out based on the following boiler efficiency formula:-

\[
\text{Boiler Efficiency} = 92.5 - \left[\frac{50A + 630(M + 9H)}{\text{GCV}} \right]
\]

where,
A = Ash % in Coal
M = Moisture % in Coal
H = Hydrogen % in Coal
GCV = Gross Calorific Value in Kcal/Kg
Station heat rate (Kcal/kWh) = Turbine heat rate or Boiler efficiency

(b) The permissible error shall be ±0.05 % in terms of toe for the purpose of determining entitlement of energy savings certificates.
Non availability of fuel and schedule :-
Station operating at part load condition following factors to be consider:-
1. Design heat rate
2. Operating heat rate

Environmental Factors:-
Increase in auxiliary power consumption due to change in environmental condition may be consider during target year.
Thank you for your patient listening