

Combustion Optimization & SNCR Technology for coal fired power stations and retrofit experience

Matthias Schneider / STEAG Energy Services GmbH Kolkata, Raipur, Hyderabad - November 2016

STEAG Energy Services Group

STEAG Energy Services

Design, site supervision and commissioning of power plants

Operation & Maintenance, catalyst management and –regeneration, personnel services

Decommissioning and dismantling of nuclear plants, safety, radiation protection and realization of final disposal sites

Energy Management Systems, process optimization by sensor-based solutions, user trainings **Information Technologies**

Operation Management Systems, Communication Technologies, Site IT

Energy Technologies Engineering

- Conceptual design
- Basic Engineering
- Tendering
 - Preparation of tender documents
 - Management of tender processes
 - Bid evaluation, contract negotiation
- Detail engineering
- Site services
 - Site Management
 - Supervision / Management of erection and commissioning
 - Performance tests
- Project Management (technical, related to EPC / supply contracts)

Experience is essential

Which type of boiler? Which type of burner? Which type of mill?

How many mills and burners?

How to connect the systems?

- Windbox or individual air supply?
- Common coal pipe or individual?

Steag optimization experience with own and 3rd parties for more than 75 years

Combustion Optimization and SNCR Systems

What is the goal

- Stable, monitorable flame
- High efficiency
 - Iow air ratio, even O₂ ratio
 - Low un-burnt carbon in ash
 - Low RH spray
 - Low exhaust gas temperature
- Low emissions (NO_x)
- Even distribution of flue gas temperature at furnace exit
- Avoidance of flame impingement on the walls
- Avoidance of slagging and fouling
- Applicability of a wide coal range

What is the reality

- Uneven distribution of coal to the individual burners (deviation up to 30 to 40%)
- As a consequence high air ratio necessary
- Uneven distribution of flue gas temperature entering the convective path
- Lower steam output
- Slagging, Fouling, Corrosion
- High NO_x values
- No low load operation possible

What is possible

- Max deviation of coal about 5 % to 10 %
- NO_x depending on coal 350 to 450 mg/m³
- Air ratio 1.15 to 1.17
- Minimum load 10 to 15 % of MCR

What are the tools beside software

- Rotating classifier
- Balancing of the coal flow to the burners
- Balancing pressure drop of the coal pipes
- Fine grinding
- Single burner air control offers more possibilities for optimization than wind box design

Combustion optimization Primary NO_x-Measures

steag

It is the art of engineering to reach low NOx-values while avoiding those unwished side effects

Example for bad coal distribution

November 2016

Better coal distribution other example

What can be achieved by CFD?

- Optimum furnace design
- Even distribution of coal and air
- Avoiding wall corrosion by avoidance of air lean areas close to the wall
- Optimized arrangement of burners inside the boiler
- Simulation of flow field and combustion at various loads
- Simulation of radiative and convective heat transfer

Limited:

- Increase of flame stability
- Avoidance of slagging and fouling

Example for temperature distribution furnace mid plane

	0 60 00	
	2.58e+U3	
-	2.47e+03	
_	2.35e+03	
	2.24e+03	
	2.13e+03	
	2.01e+03	
	1.90e+03	
	1.78e+03	
	1.67e+03	
	1.55e+03	
	1.44e+03	
	1.32e+03	
	1.21e+03	
	1.09e+03	
	9.80e+02	
	8.66e+02	
	7.51e+02	
	6.36e+02	
	5.22e+02	Z
	4.07e+02	Ł
	2.93e+02	Λ

CFD Simulation of furnace and hopper design - O₂ plots

Old arrangement of hopper

Optimized arrangement of hopper

Optimized furnace and hopper design based on CFD Simulation

steag

Old arrangement of hopper

Optimized arrangement of hopper

Coal parameters are influencing the combustion behavior Propagation velocity of coal flame

Volatiles in%

Ash in %

Ν

Furnace Cross Section Heat Release Rate in MW/m² Furnace Volume Heat Release Rate MW/m³

18

Mobile measuring vehicle

- Pulverized-coal measuring module
- Fly ash measuring module
- **PC / fly ash analysing module**
- Extensive gas analyzing module
- Portable gas analyzing module
- Calibration module for gas analyzers
- Temperature measuring module
- Volume flow rates measuring module
- Measuring module for turbines
- Measuring module for pumps
- Measuring module for condensers
- Measuring-value data logging and processing module

Length	8.000 m overall
width	2.500 m
height	3.200 m
gross vehicle weight	8.990 kg

Key Statements

- ⇒ Most important is to ensure an even distribution of coal to the individual burners
- \Rightarrow Reduction of NO_x values depending on quality of the coal blend
- \Rightarrow Air ratio between 1.15 and 1.17 is a goal for a new boiler
- ⇒ Tools to reach these goals : Balancing of the coal ducts, individual control of the air ratio of single burners, fine grinding
- ⇒ All of this can be a solid foundation for the use of software tools for further optimization of the entire combustion system. By software an optimization is possible but it cannot correct mistakes in design of the hardware.

Selective Non-Catalytic Reduction (SNCR) Systems

steag

- 18 Installations
- Boiler types include stokers, front wall fired, roof fired, tangential fired, cyclone and opposed wall fired units
- Unit size from 15 to 620 MW
- Coal and Wood
- 35-50% urea reagent and 19% aqueous NH₃ systems
- Achieve NO_x reductions in the range of 25% to 35%, with STEAG POWITECH up to 40 45% Turnkey Installation
- Current Projects:
 - PNM San Juan (350 & 650 MW)
 - Iberdrola Lada Station, Spain (350 MW)

November 2016 Völklingen Power Station (195 MW)

NOx reduction as a function of temperature and oxygen

steag

- NOx reduction = function of O₂
- Optimal temperature window between 2 – 3 % O₂ and 900 – 1050 °C
- Actual temperature window between 2 - 3 % O₂ and 900 - 1200 °C

Measures for SNCR range adjustment

Temperature measurement:

- with suction type pyrometer:
 - at different levels and depths of indentation
 - using existing ports / hatches
- with acoustic temperature measurement:
 - measurement at one level
 - preparation of boiler (see next slide)

Ammonia (urea) test injection:

- test injection with urea solution:
 - at different boiler loads (typical load profile)
 - at different levels and with (arrangement on basis of the temperature measurements

Acoustic temperature measurement – Preparation of boiler

Acoustic temperature measurement – Arrangement

Acoustic temperature measurement – Temperature profiles at 195 MW Power Station

steag

160 MW with Mills 1 to 4

121 MW with Mills 1,2 and 3

130 MW with Mills 1 to 4

Source: Bonnenberg & Drescher

185 MW mit with Mills 1 to 4

Acoustic temperature measurement – Equipment

Transceiver unit

Transition cone

Source: Bonnenberg & Drescher

Iberdrola Lada Station SNCR Project

steag

•Unit Particulars:

- Opposed fired unit with 2 levels of OFA
- Full load 360 MW
- **B&W DRB Burners (early generation)**
- Partnership between EPC company

•Project Scope

		STEAG SCR-Tech	INERCO
•	Urea Storage System	All Process Design & Assistance in Purchasing	All Supply and A&E System
•	SNCR Zone	All Process Design, Equipment Design & Purchasing Assistance	All equipment Supply
•	Burner Design		Design and Supply
•	CFD Modeling	All Modeling, Burner through Boiler	
Noven	nber 2016		Design and Supply

Iberdrola Lada Station SNCR Project

Iberdrola Lada Station Temperature

Iberdrola Lada Station NO_x Profiling

Iberdrola Lada Station CO Profiling

Iberdrola Lada Station CO Profiling

There are generally higher CO concentrations adjacent to the waterwalls in the lower furnace in Cases 2 and 3.

Case 3

November 2016

Iberdrola Lada Station Heat Flux

PNM – San Juan Station

San Juan Station Units 1 & 4

- San Juan Unit 1 360 MW's
- San Juan Unit 4 550 MW's

Performed a Demonstration Test with Urea

- SNCR System
- Urea Storage
 - Single Storage for both Units
 - Wet or Dry supply
 - Solutionizing System (converting dry urea to wet)
- Urea Circulation System
- Water Boost System
- Chemical Hardness System
- Urea Injection System
 - 3 elevations with 6 injectors each (Unit 1)
 - 2 elevation with 10 injectors each (Unit 4)

SNCR plant on San Juan PP Unit 4

- Two path boiler
- 550 MW
- Boiler cross section 15.5 m x 18.3 m

Ammonia (urea) test injection

Testing plant with:

- metering and mixing module
- pumping module
- storage container for urea solution and
- temporary installation of injector

Source: Mehldau & Steinfath

November 2016

General SNCR process basics – Injection lance

STEAG's Ammonia Systems

- •STEAG's experience brought to the US in the early 1990's.
- •Have designed the Ammonia Systems many US utilities.
- •Have O&M of systems since the mid-1980's.
- •Full Scope, EPC capabilities.
- •Aqueous or Anhydrous ammonia
- •Design of both pressurized and atmospheric systems

PNM San Juan Station

Urea Storage / Solutionizing System

Dilution Water

PNM – San Juan Station

SNCR Injectors

Chemical Mixing Skids (2 units)

PNM San Juan Station

Local DCS Indication Panel

Sample PLC Based System

PNM San Juan

Chemical Hardness Skid

MKV Fenne – General process flow

Acoustic temperature measurement – control

Principal Design of an acoustic Gas temperature measurement system agam

Source: Bonnenberg & Drescher

General comparison of SCR and SNCR

SCR	SNCR	
NOx removal efficiency > <u>80%</u>	NOx removal <u>efficiency max. 40-50%</u>	
NH ₃ -Slip < 3 mg/Nm ³	NH ₃ -Slip < 20 mg/Nm ³	
 <u>Additional fan capacity</u> due to pressure loss at the catalyst, mixing, heat transfer system, flue gas 	higher reducing agents supply	
 Additional energy input for the heating of the flue gas (only with Tail-end SCR) 	Sometimes <u>pollution of the fly ash</u> or the by- product of the flue gas cleaning with ammonia	
 <u>SO₃</u> react at low temperature cat. to <u>Ammonium-bi-sulfate</u>: Increasing of the pressure loss due to deposits Corrosion by Ammonium-bi-sulfate 	 Lower susceptible to faults because operating critical components are redundant implemented 	
 Negative impact on availability Investment cost (app. 5-10 times higher as for SNCR) 	Low Investment- and operation costs	
High operation costs	Nearly <u>no expense for maintenance</u>	
 <u>High maintenance costs (fan, heat transfer system,</u> CatRegeneration/exchange) 		
 Negative impact on the <u>availability</u> of the complete plant 		

Contact: Dipl.-Ing. Matthias Schneider STEAG Energy Services GmbH Ruettenscheider Str. 1-3 45128 Essen / Germany Phone: +49 201 801-2859 Mobile: +49 171 566-9263 E-Mail: matthias.schneider@steag.com