
How	to	play	mms	stream	on	android

http://urseghy.com/c3?utm_term=how+to+play+mms+stream+on+android

How	to	stream	with	android	phone.	How	to	stream	on	android.	How	to	stream	android	games.

Always	make	sure	to	disable	sensors	you	don't	need,	especially	when	your	activity	is	paused.	Failing	to	do	so	can	drain	the	battery	in	just	a	few	hours.	Note	that	the	system	will	not	disable	sensors	automatically	when	the	screen	turns	off.	class	SensorManager.DynamicSensorCallback	Used	for	receiving	notifications	from	the	SensorManager	when
dynamic	sensors	are	connected	or	disconnected.		int	AXIS_MINUS_X	see	remapCoordinateSystem(float[],	int,	int,	float[])	int	AXIS_MINUS_Y	see	remapCoordinateSystem(float[],	int,	int,	float[])	int	AXIS_MINUS_Z	see	remapCoordinateSystem(float[],	int,	int,	float[])	int	AXIS_X	see	remapCoordinateSystem(float[],	int,	int,	float[])	int	AXIS_Y	see
remapCoordinateSystem(float[],	int,	int,	float[])	int	AXIS_Z	see	remapCoordinateSystem(float[],	int,	int,	float[])	int	DATA_X	This	constant	was	deprecated	in	API	level	15.	use	Sensor	instead.	int	DATA_Y	This	constant	was	deprecated	in	API	level	15.	use	Sensor	instead.	int	DATA_Z	This	constant	was	deprecated	in	API	level	15.	use	Sensor	instead.	float
GRAVITY_DEATH_STAR_I	Gravity	(estimate)	on	the	first	Death	Star	in	Empire	units	(m/s^2)	float	GRAVITY_EARTH	Earth's	gravity	in	SI	units	(m/s^2)	float	GRAVITY_JUPITER	Jupiter's	gravity	in	SI	units	(m/s^2)	float	GRAVITY_MARS	Mars'	gravity	in	SI	units	(m/s^2)	float	GRAVITY_MERCURY	Mercury's	gravity	in	SI	units	(m/s^2)	float
GRAVITY_MOON	The	Moon's	gravity	in	SI	units	(m/s^2)	float	GRAVITY_NEPTUNE	Neptune's	gravity	in	SI	units	(m/s^2)	float	GRAVITY_PLUTO	Pluto's	gravity	in	SI	units	(m/s^2)	float	GRAVITY_SATURN	Saturn's	gravity	in	SI	units	(m/s^2)	float	GRAVITY_SUN	Sun's	gravity	in	SI	units	(m/s^2)	float	GRAVITY_THE_ISLAND	Gravity	on	the	island	float
GRAVITY_URANUS	Uranus'	gravity	in	SI	units	(m/s^2)	float	GRAVITY_VENUS	Venus'	gravity	in	SI	units	(m/s^2)	float	LIGHT_CLOUDY	luminance	under	a	cloudy	sky	in	lux	float	LIGHT_FULLMOON	luminance	at	night	with	full	moon	in	lux	float	LIGHT_NO_MOON	luminance	at	night	with	no	moon	in	lux	float	LIGHT_OVERCAST	luminance	under	an
overcast	sky	in	lux	float	LIGHT_SHADE	luminance	in	shade	in	lux	float	LIGHT_SUNLIGHT	luminance	of	sunlight	in	lux	float	LIGHT_SUNLIGHT_MAX	Maximum	luminance	of	sunlight	in	lux	float	LIGHT_SUNRISE	luminance	at	sunrise	in	lux	float	MAGNETIC_FIELD_EARTH_MAX	Maximum	magnetic	field	on	Earth's	surface	float
MAGNETIC_FIELD_EARTH_MIN	Minimum	magnetic	field	on	Earth's	surface	float	PRESSURE_STANDARD_ATMOSPHERE	Standard	atmosphere,	or	average	sea-level	pressure	in	hPa	(millibar)	int	RAW_DATA_INDEX	This	constant	was	deprecated	in	API	level	15.	use	Sensor	instead.	int	RAW_DATA_X	This	constant	was	deprecated	in	API	level	15.	use
Sensor	instead.	int	RAW_DATA_Y	This	constant	was	deprecated	in	API	level	15.	use	Sensor	instead.	int	RAW_DATA_Z	This	constant	was	deprecated	in	API	level	15.	use	Sensor	instead.	int	SENSOR_ACCELEROMETER	This	constant	was	deprecated	in	API	level	15.	use	Sensor	instead.	int	SENSOR_ALL	This	constant	was	deprecated	in	API	level	15.	use
Sensor	instead.	int	SENSOR_DELAY_FASTEST	get	sensor	data	as	fast	as	possible	int	SENSOR_DELAY_GAME	rate	suitable	for	games	int	SENSOR_DELAY_NORMAL	rate	(default)	suitable	for	screen	orientation	changes	int	SENSOR_DELAY_UI	rate	suitable	for	the	user	interface	int	SENSOR_LIGHT	This	constant	was	deprecated	in	API	level	15.	use
Sensor	instead.	int	SENSOR_MAGNETIC_FIELD	This	constant	was	deprecated	in	API	level	15.	use	Sensor	instead.	int	SENSOR_MAX	This	constant	was	deprecated	in	API	level	15.	use	Sensor	instead.	int	SENSOR_MIN	This	constant	was	deprecated	in	API	level	15.	use	Sensor	instead.	int	SENSOR_ORIENTATION	This	constant	was	deprecated	in	API
level	15.	use	Sensor	instead.	int	SENSOR_ORIENTATION_RAW	This	constant	was	deprecated	in	API	level	15.	use	Sensor	instead.	int	SENSOR_PROXIMITY	This	constant	was	deprecated	in	API	level	15.	use	Sensor	instead.	int	SENSOR_STATUS_ACCURACY_HIGH	This	sensor	is	reporting	data	with	maximum	accuracy	int
SENSOR_STATUS_ACCURACY_LOW	This	sensor	is	reporting	data	with	low	accuracy,	calibration	with	the	environment	is	needed	int	SENSOR_STATUS_ACCURACY_MEDIUM	This	sensor	is	reporting	data	with	an	average	level	of	accuracy,	calibration	with	the	environment	may	improve	the	readings	int	SENSOR_STATUS_NO_CONTACT	The	values
returned	by	this	sensor	cannot	be	trusted	because	the	sensor	had	no	contact	with	what	it	was	measuring	(for	example,	the	heart	rate	monitor	is	not	in	contact	with	the	user).	int	SENSOR_STATUS_UNRELIABLE	The	values	returned	by	this	sensor	cannot	be	trusted,	calibration	is	needed	or	the	environment	doesn't	allow	readings	int
SENSOR_TEMPERATURE	This	constant	was	deprecated	in	API	level	15.	use	Sensor	instead.	int	SENSOR_TRICORDER	This	constant	was	deprecated	in	API	level	15.	use	Sensor	instead.	float	STANDARD_GRAVITY	Standard	gravity	(g)	on	Earth.	boolean	cancelTriggerSensor(TriggerEventListener	listener,	Sensor	sensor)	Cancels	receiving	trigger
events	for	a	trigger	sensor.	SensorDirectChannel	createDirectChannel(MemoryFile	mem)	Create	a	sensor	direct	channel	backed	by	shared	memory	wrapped	in	MemoryFile	object.	SensorDirectChannel	createDirectChannel(HardwareBuffer	mem)	Create	a	sensor	direct	channel	backed	by	shared	memory	wrapped	in	HardwareBuffer	object.	boolean
flush(SensorEventListener	listener)	Flushes	the	FIFO	of	all	the	sensors	registered	for	this	listener.	static	float	getAltitude(float	p0,	float	p)	Computes	the	Altitude	in	meters	from	the	atmospheric	pressure	and	the	pressure	at	sea	level.	static	void	getAngleChange(float[]	angleChange,	float[]	R,	float[]	prevR)	Helper	function	to	compute	the	angle	change
between	two	rotation	matrices.	Sensor	getDefaultSensor(int	type)	Use	this	method	to	get	the	default	sensor	for	a	given	type.	Sensor	getDefaultSensor(int	type,	boolean	wakeUp)	Return	a	Sensor	with	the	given	type	and	wakeUp	properties.	List	getDynamicSensorList(int	type)	Use	this	method	to	get	a	list	of	available	dynamic	sensors	of	a	certain	type.
static	float	getInclination(float[]	I)	Computes	the	geomagnetic	inclination	angle	in	radians	from	the	inclination	matrix	I	returned	by	getRotationMatrix(float[],	float[],	float[],	float[]).	static	float[]	getOrientation(float[]	R,	float[]	values)	Computes	the	device's	orientation	based	on	the	rotation	matrix.	static	void	getQuaternionFromVector(float[]	Q,	float[]
rv)	Helper	function	to	convert	a	rotation	vector	to	a	normalized	quaternion.	static	boolean	getRotationMatrix(float[]	R,	float[]	I,	float[]	gravity,	float[]	geomagnetic)	Computes	the	inclination	matrix	I	as	well	as	the	rotation	matrix	R	transforming	a	vector	from	the	device	coordinate	system	to	the	world's	coordinate	system	which	is	defined	as	a	direct
orthonormal	basis,	where:	X	is	defined	as	the	vector	product	Y.Z	(It	is	tangential	to	the	ground	at	the	device's	current	location	and	roughly	points	East).	static	void	getRotationMatrixFromVector(float[]	R,	float[]	rotationVector)	Helper	function	to	convert	a	rotation	vector	to	a	rotation	matrix.	List	getSensorList(int	type)	Use	this	method	to	get	the	list	of
available	sensors	of	a	certain	type.	int	getSensors()	This	method	was	deprecated	in	API	level	15.	This	method	is	deprecated,	use	SensorManager#getSensorList(int)	instead	boolean	isDynamicSensorDiscoverySupported()	Tell	if	dynamic	sensor	discovery	feature	is	supported	by	system.	void
registerDynamicSensorCallback(SensorManager.DynamicSensorCallback	callback)	Add	a	DynamicSensorCallback	to	receive	dynamic	sensor	connection	callbacks.	void	registerDynamicSensorCallback(SensorManager.DynamicSensorCallback	callback,	Handler	handler)	Add	a	DynamicSensorCallback	to	receive	dynamic	sensor	connection	callbacks.
boolean	registerListener(SensorEventListener	listener,	Sensor	sensor,	int	samplingPeriodUs)	Registers	a	SensorEventListener	for	the	given	sensor	at	the	given	sampling	frequency.	boolean	registerListener(SensorEventListener	listener,	Sensor	sensor,	int	samplingPeriodUs,	int	maxReportLatencyUs)	Registers	a	SensorEventListener	for	the	given
sensor	at	the	given	sampling	frequency	and	the	given	maximum	reporting	latency.	boolean	registerListener(SensorEventListener	listener,	Sensor	sensor,	int	samplingPeriodUs,	Handler	handler)	Registers	a	SensorEventListener	for	the	given	sensor.	boolean	registerListener(SensorListener	listener,	int	sensors)	This	method	was	deprecated	in	API	level
15.	This	method	is	deprecated,	use	SensorManager#registerListener(SensorEventListener,	Sensor,	int)	instead.	boolean	registerListener(SensorListener	listener,	int	sensors,	int	rate)	This	method	was	deprecated	in	API	level	15.	This	method	is	deprecated,	use	SensorManager#registerListener(SensorEventListener,	Sensor,	int)	instead.	boolean
registerListener(SensorEventListener	listener,	Sensor	sensor,	int	samplingPeriodUs,	int	maxReportLatencyUs,	Handler	handler)	Registers	a	SensorEventListener	for	the	given	sensor	at	the	given	sampling	frequency	and	the	given	maximum	reporting	latency.	static	boolean	remapCoordinateSystem(float[]	inR,	int	X,	int	Y,	float[]	outR)	Rotates	the
supplied	rotation	matrix	so	it	is	expressed	in	a	different	coordinate	system.	boolean	requestTriggerSensor(TriggerEventListener	listener,	Sensor	sensor)	Requests	receiving	trigger	events	for	a	trigger	sensor.	void	unregisterDynamicSensorCallback(SensorManager.DynamicSensorCallback	callback)	Remove	a	DynamicSensorCallback	to	stop	sending
dynamic	sensor	connection	events	to	that	callback.	void	unregisterListener(SensorEventListener	listener)	Unregisters	a	listener	for	all	sensors.	void	unregisterListener(SensorEventListener	listener,	Sensor	sensor)	Unregisters	a	listener	for	the	sensors	with	which	it	is	registered.	void	unregisterListener(SensorListener	listener)	This	method	was
deprecated	in	API	level	15.	This	method	is	deprecated,	use	SensorManager#unregisterListener(SensorEventListener)	instead.	void	unregisterListener(SensorListener	listener,	int	sensors)	This	method	was	deprecated	in	API	level	15.	This	method	is	deprecated,	use	SensorManager#unregisterListener(SensorEventListener,	Sensor)	instead.	From	class
java.lang.Object	Object	clone()	Creates	and	returns	a	copy	of	this	object.	boolean	equals(Object	obj)	Indicates	whether	some	other	object	is	"equal	to"	this	one.	void	finalize()	Called	by	the	garbage	collector	on	an	object	when	garbage	collection	determines	that	there	are	no	more	references	to	the	object.	final	Class	getClass()	Returns	the	runtime	class
of	this	Object.	int	hashCode()	Returns	a	hash	code	value	for	the	object.	final	void	notify()	Wakes	up	a	single	thread	that	is	waiting	on	this	object's	monitor.	final	void	notifyAll()	Wakes	up	all	threads	that	are	waiting	on	this	object's	monitor.	String	toString()	Returns	a	string	representation	of	the	object.	final	void	wait(long	timeout,	int	nanos)	Causes	the
current	thread	to	wait	until	another	thread	invokes	the	notify()	method	or	the	notifyAll()	method	for	this	object,	or	some	other	thread	interrupts	the	current	thread,	or	a	certain	amount	of	real	time	has	elapsed.	final	void	wait(long	timeout)	Causes	the	current	thread	to	wait	until	either	another	thread	invokes	the	notify()	method	or	the	notifyAll()
method	for	this	object,	or	a	specified	amount	of	time	has	elapsed.	final	void	wait()	Causes	the	current	thread	to	wait	until	another	thread	invokes	the	notify()	method	or	the	notifyAll()	method	for	this	object.	public	static	final	float	GRAVITY_DEATH_STAR_I	Gravity	(estimate)	on	the	first	Death	Star	in	Empire	units	(m/s^2)	Constant	Value:	3.5303614E-7
public	static	final	float	GRAVITY_EARTH	Earth's	gravity	in	SI	units	(m/s^2)	Constant	Value:	9.80665	public	static	final	float	GRAVITY_JUPITER	Jupiter's	gravity	in	SI	units	(m/s^2)	Constant	Value:	23.12	public	static	final	float	GRAVITY_MARS	Mars'	gravity	in	SI	units	(m/s^2)	Constant	Value:	3.71	public	static	final	float	GRAVITY_MERCURY	Mercury's
gravity	in	SI	units	(m/s^2)	Constant	Value:	3.7	public	static	final	float	GRAVITY_MOON	The	Moon's	gravity	in	SI	units	(m/s^2)	Constant	Value:	1.6	public	static	final	float	GRAVITY_NEPTUNE	Neptune's	gravity	in	SI	units	(m/s^2)	Constant	Value:	11.0	public	static	final	float	GRAVITY_PLUTO	Pluto's	gravity	in	SI	units	(m/s^2)	Constant	Value:	0.6
public	static	final	float	GRAVITY_SATURN	Saturn's	gravity	in	SI	units	(m/s^2)	Constant	Value:	8.96	public	static	final	float	GRAVITY_SUN	Sun's	gravity	in	SI	units	(m/s^2)	Constant	Value:	275.0	public	static	final	float	GRAVITY_THE_ISLAND	Gravity	on	the	island	Constant	Value:	4.815162	public	static	final	float	GRAVITY_URANUS	Uranus'	gravity	in
SI	units	(m/s^2)	Constant	Value:	8.69	public	static	final	float	GRAVITY_VENUS	Venus'	gravity	in	SI	units	(m/s^2)	Constant	Value:	8.87	public	static	final	float	LIGHT_CLOUDY	luminance	under	a	cloudy	sky	in	lux	Constant	Value:	100.0	public	static	final	float	LIGHT_FULLMOON	luminance	at	night	with	full	moon	in	lux	Constant	Value:	0.25	public
static	final	float	LIGHT_NO_MOON	luminance	at	night	with	no	moon	in	lux	Constant	Value:	0.001	public	static	final	float	LIGHT_OVERCAST	luminance	under	an	overcast	sky	in	lux	Constant	Value:	10000.0	public	static	final	float	LIGHT_SHADE	luminance	in	shade	in	lux	Constant	Value:	20000.0	public	static	final	float	LIGHT_SUNLIGHT	luminance	of
sunlight	in	lux	Constant	Value:	110000.0	public	static	final	float	LIGHT_SUNLIGHT_MAX	Maximum	luminance	of	sunlight	in	lux	Constant	Value:	120000.0	public	static	final	float	LIGHT_SUNRISE	luminance	at	sunrise	in	lux	Constant	Value:	400.0	public	static	final	float	MAGNETIC_FIELD_EARTH_MAX	Maximum	magnetic	field	on	Earth's	surface
Constant	Value:	60.0	public	static	final	float	MAGNETIC_FIELD_EARTH_MIN	Minimum	magnetic	field	on	Earth's	surface	Constant	Value:	30.0	public	static	final	float	PRESSURE_STANDARD_ATMOSPHERE	Standard	atmosphere,	or	average	sea-level	pressure	in	hPa	(millibar)	Constant	Value:	1013.25	Added	in	API	level	1	Deprecated	in	API	level	15
public	static	final	int	SENSOR_ACCELEROMETER	This	constant	was	deprecated	in	API	level	15.	use	Sensor	instead.	A	constant	describing	an	accelerometer.	See	SensorListener	for	more	details.	Constant	Value:	2	(0x00000002)	Added	in	API	level	1	Deprecated	in	API	level	15	public	static	final	int	SENSOR_ALL	This	constant	was	deprecated	in	API
level	15.	use	Sensor	instead.	A	constant	that	includes	all	sensors	Constant	Value:	127	(0x0000007f)	public	static	final	int	SENSOR_DELAY_FASTEST	get	sensor	data	as	fast	as	possible	Constant	Value:	0	(0x00000000)	public	static	final	int	SENSOR_DELAY_GAME	rate	suitable	for	games	Constant	Value:	1	(0x00000001)	public	static	final	int
SENSOR_DELAY_NORMAL	rate	(default)	suitable	for	screen	orientation	changes	Constant	Value:	3	(0x00000003)	public	static	final	int	SENSOR_DELAY_UI	rate	suitable	for	the	user	interface	Constant	Value:	2	(0x00000002)	Added	in	API	level	1	Deprecated	in	API	level	15	public	static	final	int	SENSOR_LIGHT	This	constant	was	deprecated	in	API
level	15.	use	Sensor	instead.	A	constant	describing	an	ambient	light	sensor	See	SensorListener	for	more	details.	Constant	Value:	16	(0x00000010)	Added	in	API	level	1	Deprecated	in	API	level	15	public	static	final	int	SENSOR_MAGNETIC_FIELD	This	constant	was	deprecated	in	API	level	15.	use	Sensor	instead.	A	constant	describing	a	magnetic
sensor	See	SensorListener	for	more	details.	Constant	Value:	8	(0x00000008)	Added	in	API	level	1	Deprecated	in	API	level	15	public	static	final	int	SENSOR_MAX	This	constant	was	deprecated	in	API	level	15.	use	Sensor	instead.	Largest	sensor	ID	Constant	Value:	64	(0x00000040)	Added	in	API	level	1	Deprecated	in	API	level	15	public	static	final	int
SENSOR_MIN	This	constant	was	deprecated	in	API	level	15.	use	Sensor	instead.	Smallest	sensor	ID	Constant	Value:	1	(0x00000001)	Added	in	API	level	1	Deprecated	in	API	level	15	public	static	final	int	SENSOR_ORIENTATION	This	constant	was	deprecated	in	API	level	15.	use	Sensor	instead.	A	constant	describing	an	orientation	sensor.	See
SensorListener	for	more	details.	Constant	Value:	1	(0x00000001)	Added	in	API	level	1	Deprecated	in	API	level	15	public	static	final	int	SENSOR_ORIENTATION_RAW	This	constant	was	deprecated	in	API	level	15.	use	Sensor	instead.	A	constant	describing	an	orientation	sensor.	See	SensorListener	for	more	details.	Constant	Value:	128	(0x00000080)
Added	in	API	level	1	Deprecated	in	API	level	15	public	static	final	int	SENSOR_PROXIMITY	This	constant	was	deprecated	in	API	level	15.	use	Sensor	instead.	A	constant	describing	a	proximity	sensor	See	SensorListener	for	more	details.	Constant	Value:	32	(0x00000020)	public	static	final	int	SENSOR_STATUS_ACCURACY_HIGH	This	sensor	is
reporting	data	with	maximum	accuracy	Constant	Value:	3	(0x00000003)	public	static	final	int	SENSOR_STATUS_ACCURACY_LOW	This	sensor	is	reporting	data	with	low	accuracy,	calibration	with	the	environment	is	needed	Constant	Value:	1	(0x00000001)	public	static	final	int	SENSOR_STATUS_ACCURACY_MEDIUM	This	sensor	is	reporting	data
with	an	average	level	of	accuracy,	calibration	with	the	environment	may	improve	the	readings	Constant	Value:	2	(0x00000002)	public	static	final	int	SENSOR_STATUS_NO_CONTACT	The	values	returned	by	this	sensor	cannot	be	trusted	because	the	sensor	had	no	contact	with	what	it	was	measuring	(for	example,	the	heart	rate	monitor	is	not	in
contact	with	the	user).	Constant	Value:	-1	(0xffffffff)	public	static	final	int	SENSOR_STATUS_UNRELIABLE	The	values	returned	by	this	sensor	cannot	be	trusted,	calibration	is	needed	or	the	environment	doesn't	allow	readings	Constant	Value:	0	(0x00000000)	Added	in	API	level	1	Deprecated	in	API	level	15	public	static	final	int
SENSOR_TEMPERATURE	This	constant	was	deprecated	in	API	level	15.	use	Sensor	instead.	A	constant	describing	a	temperature	sensor	See	SensorListener	for	more	details.	Constant	Value:	4	(0x00000004)	Added	in	API	level	1	Deprecated	in	API	level	15	public	static	final	int	SENSOR_TRICORDER	This	constant	was	deprecated	in	API	level	15.	use
Sensor	instead.	A	constant	describing	a	Tricorder	See	SensorListener	for	more	details.	Constant	Value:	64	(0x00000040)	public	static	final	float	STANDARD_GRAVITY	Standard	gravity	(g)	on	Earth.	This	value	is	equivalent	to	1G	Constant	Value:	9.80665	public	SensorDirectChannel	createDirectChannel	(MemoryFile	mem)	Create	a	sensor	direct
channel	backed	by	shared	memory	wrapped	in	MemoryFile	object.	The	resulting	channel	can	be	used	for	delivering	sensor	events	to	native	code,	other	processes,	GPU/DSP	or	other	co-processors	without	CPU	intervention.	This	is	the	recommanded	for	high	performance	sensor	applications	that	use	high	sensor	rates	(e.g.	greater	than	200Hz)	and
cares	about	sensor	event	latency.	Use	the	returned	SensorDirectChannel	object	to	configure	direct	report	of	sensor	events.	After	use,	call	SensorDirectChannel.close()	to	free	up	resource	in	sensor	system	associated	with	the	direct	channel.	Parameters	mem	MemoryFile:	A	MemoryFile	shared	memory	object.	Returns	SensorDirectChannel	A
SensorDirectChannel	object.	See	also:	SensorDirectChannel.close()	public	boolean	flush	(SensorEventListener	listener)	Flushes	the	FIFO	of	all	the	sensors	registered	for	this	listener.	If	there	are	events	in	the	FIFO	of	the	sensor,	they	are	returned	as	if	the	maxReportLantecy	of	the	FIFO	has	expired.	Events	are	returned	in	the	usual	way	through	the
SensorEventListener.	This	call	doesn't	affect	the	maxReportLantecy	for	this	sensor.	This	call	is	asynchronous	and	returns	immediately.	onFlushCompleted	is	called	after	all	the	events	in	the	batch	at	the	time	of	calling	this	method	have	been	delivered	successfully.	If	the	hardware	doesn't	support	flush,	it	still	returns	true	and	a	trivial	flush	complete
event	is	sent	after	the	current	event	for	all	the	clients	registered	for	this	sensor.	Parameters	listener	SensorEventListener:	A	SensorEventListener	object	which	was	previously	used	in	a	registerListener	call.	Returns	boolean	true	if	the	flush	is	initiated	successfully	on	all	the	sensors	registered	for	this	listener,	false	if	no	sensor	is	previously	registered
for	this	listener	or	flush	on	one	of	the	sensors	fails.	Throws	IllegalArgumentException	when	listener	is	null.	See	also:	registerListener(SensorEventListener,	Sensor,	int,	int)	public	static	float	getAltitude	(float	p0,	float	p)	Computes	the	Altitude	in	meters	from	the	atmospheric	pressure	and	the	pressure	at	sea	level.	Typically	the	atmospheric	pressure	is
read	from	a	Sensor#TYPE_PRESSURE	sensor.	The	pressure	at	sea	level	must	be	known,	usually	it	can	be	retrieved	from	airport	databases	in	the	vicinity.	If	unknown,	you	can	use	PRESSURE_STANDARD_ATMOSPHERE	as	an	approximation,	but	absolute	altitudes	won't	be	accurate.	To	calculate	altitude	differences,	you	must	calculate	the	difference
between	the	altitudes	at	both	points.	If	you	don't	know	the	altitude	as	sea	level,	you	can	use	PRESSURE_STANDARD_ATMOSPHERE	instead,	which	will	give	good	results	considering	the	range	of	pressure	typically	involved.	float	altitude_difference	=	getAltitude(SensorManager.PRESSURE_STANDARD_ATMOSPHERE,	pressure_at_point2)	-
getAltitude(SensorManager.PRESSURE_STANDARD_ATMOSPHERE,	pressure_at_point1);	Parameters	p0	float:	pressure	at	sea	level	p	float:	atmospheric	pressure	Returns	float	Altitude	in	meters	public	static	void	getAngleChange	(float[]	angleChange,	float[]	R,	float[]	prevR)	Helper	function	to	compute	the	angle	change	between	two	rotation
matrices.	Given	a	current	rotation	matrix	(R)	and	a	previous	rotation	matrix	(prevR)	computes	the	intrinsic	rotation	around	the	z,	x,	and	y	axes	which	transforms	prevR	to	R.	outputs	a	3	element	vector	containing	the	z,	x,	and	y	angle	change	at	indexes	0,	1,	and	2	respectively.	Each	input	matrix	is	either	as	a	3x3	or	4x4	row-major	matrix	depending	on
the	length	of	the	passed	array:	If	the	array	length	is	9,	then	the	array	elements	represent	this	matrix	/	R[0]	R[1]	R[2]	\	|	R[3]	R[4]	R[5]	|	\	R[6]	R[7]	R[8]	/	If	the	array	length	is	16,	then	the	array	elements	represent	this	matrix	/	R[0]	R[1]	R[2]	R[3]	\	|	R[4]	R[5]	R[6]	R[7]	|	|	R[8]	R[9]	R[10]	R[11]	|	\	R[12]	R[13]	R[14]	R[15]	/	See
getOrientation(float[],	float[])	for	more	detailed	definition	of	the	output.	Parameters	angleChange	float:	an	an	array	of	floats	(z,	x,	and	y)	in	which	the	angle	change	(in	radians)	is	stored	R	float:	current	rotation	matrix	prevR	float:	previous	rotation	matrix	public	Sensor	getDefaultSensor	(int	type)	Use	this	method	to	get	the	default	sensor	for	a	given
type.	Note	that	the	returned	sensor	could	be	a	composite	sensor,	and	its	data	could	be	averaged	or	filtered.	If	you	need	to	access	the	raw	sensors	use	getSensorList.	Parameters	type	int:	of	sensors	requested	Returns	Sensor	the	default	sensor	matching	the	requested	type	if	one	exists	and	the	application	has	the	necessary	permissions,	or	null
otherwise.	See	also:	public	Sensor	getDefaultSensor	(int	type,	boolean	wakeUp)	Return	a	Sensor	with	the	given	type	and	wakeUp	properties.	If	multiple	sensors	of	this	type	exist,	any	one	of	them	may	be	returned.	For	example,	Note:	Sensors	like	Sensor#TYPE_PROXIMITY	and	Sensor#TYPE_SIGNIFICANT_MOTION	are	declared	as	wake-up	sensors
by	default.	Parameters	type	int:	type	of	sensor	requested	wakeUp	boolean:	flag	to	indicate	whether	the	Sensor	is	a	wake-up	or	non	wake-up	sensor.	Returns	Sensor	the	default	sensor	matching	the	requested	type	and	wakeUp	properties	if	one	exists	and	the	application	has	the	necessary	permissions,	or	null	otherwise.	See	also:	public	List
getDynamicSensorList	(int	type)	Use	this	method	to	get	a	list	of	available	dynamic	sensors	of	a	certain	type.	Make	multiple	calls	to	get	sensors	of	different	types	or	use	Sensor.TYPE_ALL	to	get	all	dynamic	sensors.	NOTE:	Both	wake-up	and	non	wake-up	sensors	matching	the	given	type	are	returned.	Check	Sensor#isWakeUpSensor()	to	know	the
wake-up	properties	of	the	returned	Sensor.	Parameters	type	int:	of	sensors	requested	Returns	List	a	list	of	dynamic	sensors	matching	the	requested	type.	public	static	float	getInclination	(float[]	I)	Computes	the	geomagnetic	inclination	angle	in	radians	from	the	inclination	matrix	I	returned	by	getRotationMatrix(float[],	float[],	float[],	float[]).	Returns
float	The	geomagnetic	inclination	angle	in	radians.	public	static	float[]	getOrientation	(float[]	R,	float[]	values)	Computes	the	device's	orientation	based	on	the	rotation	matrix.	When	it	returns,	the	array	values	are	as	follows:	values[0]:	Azimuth,	angle	of	rotation	about	the	-z	axis.	This	value	represents	the	angle	between	the	device's	y	axis	and	the
magnetic	north	pole.	When	facing	north,	this	angle	is	0,	when	facing	south,	this	angle	is	π.	Likewise,	when	facing	east,	this	angle	is	π/2,	and	when	facing	west,	this	angle	is	-π/2.	The	range	of	values	is	-π	to	π.	values[1]:	Pitch,	angle	of	rotation	about	the	x	axis.	This	value	represents	the	angle	between	a	plane	parallel	to	the	device's	screen	and	a	plane
parallel	to	the	ground.	Assuming	that	the	bottom	edge	of	the	device	faces	the	user	and	that	the	screen	is	face-up,	tilting	the	top	edge	of	the	device	toward	the	ground	creates	a	positive	pitch	angle.	The	range	of	values	is	-π/2	to	π/2.	values[2]:	Roll,	angle	of	rotation	about	the	y	axis.	This	value	represents	the	angle	between	a	plane	perpendicular	to	the
device's	screen	and	a	plane	perpendicular	to	the	ground.	Assuming	that	the	bottom	edge	of	the	device	faces	the	user	and	that	the	screen	is	face-up,	tilting	the	left	edge	of	the	device	toward	the	ground	creates	a	positive	roll	angle.	The	range	of	values	is	-π	to	π.	Applying	these	three	rotations	in	the	azimuth,	pitch,	roll	order	transforms	an	identity	matrix
to	the	rotation	matrix	passed	into	this	method.	Also,	note	that	all	three	orientation	angles	are	expressed	in	radians.	Returns	float[]	The	array	values	passed	as	argument.	public	static	void	getQuaternionFromVector	(float[]	Q,	float[]	rv)	Helper	function	to	convert	a	rotation	vector	to	a	normalized	quaternion.	Given	a	rotation	vector	(presumably	from	a
ROTATION_VECTOR	sensor),	returns	a	normalized	quaternion	in	the	array	Q.	The	quaternion	is	stored	as	[w,	x,	y,	z]	Parameters	Q	float:	an	array	of	floats	in	which	to	store	the	computed	quaternion	rv	float:	the	rotation	vector	to	convert	public	static	boolean	getRotationMatrix	(float[]	R,	float[]	I,	float[]	gravity,	float[]	geomagnetic)	Computes	the
inclination	matrix	I	as	well	as	the	rotation	matrix	R	transforming	a	vector	from	the	device	coordinate	system	to	the	world's	coordinate	system	which	is	defined	as	a	direct	orthonormal	basis,	where:	X	is	defined	as	the	vector	product	Y.Z	(It	is	tangential	to	the	ground	at	the	device's	current	location	and	roughly	points	East).	Y	is	tangential	to	the	ground
at	the	device's	current	location	and	points	towards	the	magnetic	North	Pole.	Z	points	towards	the	sky	and	is	perpendicular	to	the	ground.	By	definition:	[0	0	g]	=	R	*	gravity	(g	=	magnitude	of	gravity)	[0	m	0]	=	I	*	R	*	geomagnetic	(m	=	magnitude	of	geomagnetic	field)	R	is	the	identity	matrix	when	the	device	is	aligned	with	the	world's	coordinate
system,	that	is,	when	the	device's	X	axis	points	toward	East,	the	Y	axis	points	to	the	North	Pole	and	the	device	is	facing	the	sky.	I	is	a	rotation	matrix	transforming	the	geomagnetic	vector	into	the	same	coordinate	space	as	gravity	(the	world's	coordinate	space).	I	is	a	simple	rotation	around	the	X	axis.	The	inclination	angle	in	radians	can	be	computed
with	getInclination(float[]).	Each	matrix	is	returned	either	as	a	3x3	or	4x4	row-major	matrix	depending	on	the	length	of	the	passed	array:	If	the	array	length	is	16:	/	M[0]	M[1]	M[2]	M[3]	\	|	M[4]	M[5]	M[6]	M[7]	|	|	M[8]	M[9]	M[10]	M[11]	|	\	M[12]	M[13]	M[14]	M[15]	/	This	matrix	is	ready	to	be	used	by	OpenGL	ES's	glLoadMatrixf(float[],	int).
Note	that	because	OpenGL	matrices	are	column-major	matrices	you	must	transpose	the	matrix	before	using	it.	However,	since	the	matrix	is	a	rotation	matrix,	its	transpose	is	also	its	inverse,	conveniently,	it	is	often	the	inverse	of	the	rotation	that	is	needed	for	rendering;	it	can	therefore	be	used	with	OpenGL	ES	directly.	Also	note	that	the	returned
matrices	always	have	this	form:	/	M[0]	M[1]	M[2]	0	\	|	M[4]	M[5]	M[6]	0	|	|	M[8]	M[9]	M[10]	0	|	\	0	0	0	1	/	If	the	array	length	is	9:	/	M[0]	M[1]	M[2]	\	|	M[3]	M[4]	M[5]	|	\	M[6]	M[7]	M[8]	/	The	inverse	of	each	matrix	can	be	computed	easily	by	taking	its	transpose.	The	matrices	returned	by	this	function	are	meaningful	only	when	the	device	is
not	free-falling	and	it	is	not	close	to	the	magnetic	north.	If	the	device	is	accelerating,	or	placed	into	a	strong	magnetic	field,	the	returned	matrices	may	be	inaccurate.	Parameters	R	float:	is	an	array	of	9	floats	holding	the	rotation	matrix	R	when	this	function	returns.	R	can	be	null.	I	float:	is	an	array	of	9	floats	holding	the	rotation	matrix	I	when	this
function	returns.	I	can	be	null.	gravity	float:	is	an	array	of	3	floats	containing	the	gravity	vector	expressed	in	the	device's	coordinate.	You	can	simply	use	the	values	returned	by	a	SensorEvent	of	a	Sensor	of	type	TYPE_ACCELEROMETER.	geomagnetic	float:	is	an	array	of	3	floats	containing	the	geomagnetic	vector	expressed	in	the	device's	coordinate.
You	can	simply	use	the	values	returned	by	a	SensorEvent	of	a	Sensor	of	type	TYPE_MAGNETIC_FIELD.	Returns	boolean	true	on	success,	false	on	failure	(for	instance,	if	the	device	is	in	free	fall).	Free	fall	is	defined	as	condition	when	the	magnitude	of	the	gravity	is	less	than	1/10	of	the	nominal	value.	On	failure	the	output	matrices	are	not	modified.
public	static	void	getRotationMatrixFromVector	(float[]	R,	float[]	rotationVector)	Helper	function	to	convert	a	rotation	vector	to	a	rotation	matrix.	Given	a	rotation	vector	(presumably	from	a	ROTATION_VECTOR	sensor),	returns	a	9	or	16	element	rotation	matrix	in	the	array	R.	R	must	have	length	9	or	16.	If	R.length	==	9,	the	following	matrix	is
returned:	/	R[0]	R[1]	R[2]	\	|	R[3]	R[4]	R[5]	|	\	R[6]	R[7]	R[8]	/	If	R.length	==	16,	the	following	matrix	is	returned:	/	R[0]	R[1]	R[2]	0	\	|	R[4]	R[5]	R[6]	0	|	|	R[8]	R[9]	R[10]	0	|	\	0	0	0	1	/	Parameters	R	float:	an	array	of	floats	in	which	to	store	the	rotation	matrix	rotationVector	float:	the	rotation	vector	to	convert	public	List	getSensorList	(int
type)	Use	this	method	to	get	the	list	of	available	sensors	of	a	certain	type.	Make	multiple	calls	to	get	sensors	of	different	types	or	use	Sensor.TYPE_ALL	to	get	all	the	sensors.	Note	that	the	Sensor.getName()	is	expected	to	yield	a	value	that	is	unique	across	any	sensors	that	return	the	same	value	for	Sensor.getType().	NOTE:	Both	wake-up	and	non
wake-up	sensors	matching	the	given	type	are	returned.	Check	Sensor#isWakeUpSensor()	to	know	the	wake-up	properties	of	the	returned	Sensor.	Parameters	type	int:	of	sensors	requested	Returns	List	a	list	of	sensors	matching	the	asked	type.	See	also:	getDefaultSensor(int)Sensor	public	boolean	isDynamicSensorDiscoverySupported	()	Tell	if
dynamic	sensor	discovery	feature	is	supported	by	system.	Returns	boolean	true	if	dynamic	sensor	discovery	is	supported,	false	otherwise.	public	boolean	registerListener	(SensorEventListener	listener,	Sensor	sensor,	int	samplingPeriodUs)	Registers	a	SensorEventListener	for	the	given	sensor	at	the	given	sampling	frequency.	The	events	will	be
delivered	to	the	provided	SensorEventListener	as	soon	as	they	are	available.	To	reduce	the	power	consumption,	applications	can	use	registerListener(android.hardware.SensorEventListener,	android.hardware.Sensor,	int,	int)	instead	and	specify	a	positive	non-zero	maximum	reporting	latency.	In	the	case	of	non-wake-up	sensors,	the	events	are	only
delivered	while	the	Application	Processor	(AP)	is	not	in	suspend	mode.	See	Sensor#isWakeUpSensor()	for	more	details.	To	ensure	delivery	of	events	from	non-wake-up	sensors	even	when	the	screen	is	OFF,	the	application	registering	to	the	sensor	must	hold	a	partial	wake-lock	to	keep	the	AP	awake,	otherwise	some	events	might	be	lost	while	the	AP	is
asleep.	Note	that	although	events	might	be	lost	while	the	AP	is	asleep,	the	sensor	will	still	consume	power	if	it	is	not	explicitly	deactivated	by	the	application.	Applications	must	unregister	their	SensorEventListeners	in	their	activity's	onPause()	method	to	avoid	consuming	power	while	the	device	is	inactive.	See
registerListener(android.hardware.SensorEventListener,	android.hardware.Sensor,	int,	int)	for	more	details	on	hardware	FIFO	(queueing)	capabilities	and	when	some	sensor	events	might	be	lost.	In	the	case	of	wake-up	sensors,	each	event	generated	by	the	sensor	will	cause	the	AP	to	wake-up,	ensuring	that	each	event	can	be	delivered.	Because	of
this,	registering	to	a	wake-up	sensor	has	very	significant	power	implications.	Call	Sensor#isWakeUpSensor()	to	check	whether	a	sensor	is	a	wake-up	sensor.	See	registerListener(android.hardware.SensorEventListener,	android.hardware.Sensor,	int,	int)	for	information	on	how	to	reduce	the	power	impact	of	registering	to	wake-up	sensors.	Note:	Don't
use	this	method	with	one-shot	trigger	sensors	such	as	Sensor#TYPE_SIGNIFICANT_MOTION.	Use	requestTriggerSensor(android.hardware.TriggerEventListener,	android.hardware.Sensor)	instead.	Use	Sensor#getReportingMode()	to	obtain	the	reporting	mode	of	a	given	sensor.	Parameters	listener	SensorEventListener:	A	SensorEventListener
object.	sensor	Sensor:	The	Sensor	to	register	to.	samplingPeriodUs	int:	The	rate	sensor	events	are	delivered	at.	This	is	only	a	hint	to	the	system.	Events	may	be	received	faster	or	slower	than	the	specified	rate.	Usually	events	are	received	faster.	The	value	must	be	one	of	SENSOR_DELAY_NORMAL,	SENSOR_DELAY_UI,	SENSOR_DELAY_GAME,	or
SENSOR_DELAY_FASTEST	or,	the	desired	delay	between	events	in	microseconds.	Specifying	the	delay	in	microseconds	only	works	from	Android	2.3	(API	level	9)	onwards.	For	earlier	releases,	you	must	use	one	of	the	SENSOR_DELAY_*	constants.	Returns	boolean	true	if	the	sensor	is	supported	and	successfully	enabled.	public	boolean
registerListener	(SensorEventListener	listener,	Sensor	sensor,	int	samplingPeriodUs,	int	maxReportLatencyUs)	Registers	a	SensorEventListener	for	the	given	sensor	at	the	given	sampling	frequency	and	the	given	maximum	reporting	latency.	This	function	is	similar	to	registerListener(android.hardware.SensorEventListener,	android.hardware.Sensor,
int)	but	it	allows	events	to	stay	temporarily	in	the	hardware	FIFO	(queue)	before	being	delivered.	The	events	can	be	stored	in	the	hardware	FIFO	up	to	maxReportLatencyUs	microseconds.	Once	one	of	the	events	in	the	FIFO	needs	to	be	reported,	all	of	the	events	in	the	FIFO	are	reported	sequentially.	This	means	that	some	events	will	be	reported
before	the	maximum	reporting	latency	has	elapsed.	When	maxReportLatencyUs	is	0,	the	call	is	equivalent	to	a	call	to	registerListener(android.hardware.SensorEventListener,	android.hardware.Sensor,	int),	as	it	requires	the	events	to	be	delivered	as	soon	as	possible.	When	sensor.maxFifoEventCount()	is	0,	the	sensor	does	not	use	a	FIFO,	so	the	call
will	also	be	equivalent	to	registerListener(android.hardware.SensorEventListener,	android.hardware.Sensor,	int).	Setting	maxReportLatencyUs	to	a	positive	value	allows	to	reduce	the	number	of	interrupts	the	AP	(Application	Processor)	receives,	hence	reducing	power	consumption,	as	the	AP	can	switch	to	a	lower	power	state	while	the	sensor	is
capturing	the	data.	This	is	especially	important	when	registering	to	wake-up	sensors,	for	which	each	interrupt	causes	the	AP	to	wake	up	if	it	was	in	suspend	mode.	See	Sensor#isWakeUpSensor()	for	more	information	on	wake-up	sensors.	Note:	Don't	use	this	method	with	one-shot	trigger	sensors	such	as	Sensor#TYPE_SIGNIFICANT_MOTION.	Use
requestTriggerSensor(android.hardware.TriggerEventListener,	android.hardware.Sensor)	instead.	Parameters	listener	SensorEventListener:	A	SensorEventListener	object	that	will	receive	the	sensor	events.	If	the	application	is	interested	in	receiving	flush	complete	notifications,	it	should	register	with	SensorEventListener2	instead.	sensor	Sensor:
The	Sensor	to	register	to.	samplingPeriodUs	int:	The	desired	delay	between	two	consecutive	events	in	microseconds.	This	is	only	a	hint	to	the	system.	Events	may	be	received	faster	or	slower	than	the	specified	rate.	Usually	events	are	received	faster.	Can	be	one	of	SENSOR_DELAY_NORMAL,	SENSOR_DELAY_UI,	SENSOR_DELAY_GAME,
SENSOR_DELAY_FASTEST	or	the	delay	in	microseconds.	maxReportLatencyUs	int:	Maximum	time	in	microseconds	that	events	can	be	delayed	before	being	reported	to	the	application.	A	large	value	allows	reducing	the	power	consumption	associated	with	the	sensor.	If	maxReportLatencyUs	is	set	to	zero,	events	are	delivered	as	soon	as	they	are
available,	which	is	equivalent	to	calling	registerListener(android.hardware.SensorEventListener,	android.hardware.Sensor,	int).	Returns	boolean	true	if	the	sensor	is	supported	and	successfully	enabled.	public	boolean	registerListener	(SensorEventListener	listener,	Sensor	sensor,	int	samplingPeriodUs,	Handler	handler)	Registers	a
SensorEventListener	for	the	given	sensor.	Events	are	delivered	in	continuous	mode	as	soon	as	they	are	available.	To	reduce	the	power	consumption,	applications	can	use	registerListener(android.hardware.SensorEventListener,	android.hardware.Sensor,	int,	int)	instead	and	specify	a	positive	non-zero	maximum	reporting	latency.	Note:	Don't	use	this
method	with	a	one	shot	trigger	sensor	such	as	Sensor#TYPE_SIGNIFICANT_MOTION.	Use	requestTriggerSensor(android.hardware.TriggerEventListener,	android.hardware.Sensor)	instead.	Parameters	listener	SensorEventListener:	A	SensorEventListener	object.	sensor	Sensor:	The	Sensor	to	register	to.	samplingPeriodUs	int:	The	rate	sensor	events
are	delivered	at.	This	is	only	a	hint	to	the	system.	Events	may	be	received	faster	or	slower	than	the	specified	rate.	Usually	events	are	received	faster.	The	value	must	be	one	of	SENSOR_DELAY_NORMAL,	SENSOR_DELAY_UI,	SENSOR_DELAY_GAME,	or	SENSOR_DELAY_FASTEST	or,	the	desired	delay	between	events	in	microseconds.	Specifying	the
delay	in	microseconds	only	works	from	Android	2.3	(API	level	9)	onwards.	For	earlier	releases,	you	must	use	one	of	the	SENSOR_DELAY_*	constants.	handler	Handler:	The	Handler	the	sensor	events	will	be	delivered	to.	Returns	boolean	true	if	the	sensor	is	supported	and	successfully	enabled.	public	boolean	registerListener	(SensorEventListener
listener,	Sensor	sensor,	int	samplingPeriodUs,	int	maxReportLatencyUs,	Handler	handler)	Registers	a	SensorEventListener	for	the	given	sensor	at	the	given	sampling	frequency	and	the	given	maximum	reporting	latency.	Parameters	listener	SensorEventListener:	A	SensorEventListener	object	that	will	receive	the	sensor	events.	If	the	application	is
interested	in	receiving	flush	complete	notifications,	it	should	register	with	SensorEventListener2	instead.	sensor	Sensor:	The	Sensor	to	register	to.	samplingPeriodUs	int:	The	desired	delay	between	two	consecutive	events	in	microseconds.	This	is	only	a	hint	to	the	system.	Events	may	be	received	faster	or	slower	than	the	specified	rate.	Usually	events
are	received	faster.	Can	be	one	of	SENSOR_DELAY_NORMAL,	SENSOR_DELAY_UI,	SENSOR_DELAY_GAME,	SENSOR_DELAY_FASTEST	or	the	delay	in	microseconds.	maxReportLatencyUs	int:	Maximum	time	in	microseconds	that	events	can	be	delayed	before	being	reported	to	the	application.	A	large	value	allows	reducing	the	power	consumption
associated	with	the	sensor.	If	maxReportLatencyUs	is	set	to	zero,	events	are	delivered	as	soon	as	they	are	available,	which	is	equivalent	to	calling	registerListener(android.hardware.SensorEventListener,	android.hardware.Sensor,	int).	handler	Handler:	The	Handler	the	sensor	events	will	be	delivered	to.	Returns	boolean	true	if	the	sensor	is	supported
and	successfully	enabled.	See	also:	registerListener(SensorEventListener,	Sensor,	int,	int)	public	static	boolean	remapCoordinateSystem	(float[]	inR,	int	X,	int	Y,	float[]	outR)	Rotates	the	supplied	rotation	matrix	so	it	is	expressed	in	a	different	coordinate	system.	This	is	typically	used	when	an	application	needs	to	compute	the	three	orientation	angles
of	the	device	(see	getOrientation(float[],	float[]))	in	a	different	coordinate	system.	When	the	rotation	matrix	is	used	for	drawing	(for	instance	with	OpenGL	ES),	it	usually	doesn't	need	to	be	transformed	by	this	function,	unless	the	screen	is	physically	rotated,	in	which	case	you	can	use	Display.getRotation()	to	retrieve	the	current	rotation	of	the	screen.
Note	that	because	the	user	is	generally	free	to	rotate	their	screen,	you	often	should	consider	the	rotation	in	deciding	the	parameters	to	use	here.	Examples:	Using	the	camera	(Y	axis	along	the	camera's	axis)	for	an	augmented	reality	application	where	the	rotation	angles	are	needed:	remapCoordinateSystem(inR,	AXIS_X,	AXIS_Z,	outR);	Using	the
device	as	a	mechanical	compass	when	rotation	is	Surface.ROTATION_90:	remapCoordinateSystem(inR,	AXIS_Y,	AXIS_MINUS_X,	outR);	Beware	of	the	above	example.	This	call	is	needed	only	to	account	for	a	rotation	from	its	natural	orientation	when	calculating	the	rotation	angles	(see	getOrientation(float[],	float[])).	If	the	rotation	matrix	is	also	used
for	rendering,	it	may	not	need	to	be	transformed,	for	instance	if	your	Activity	is	running	in	landscape	mode.	Since	the	resulting	coordinate	system	is	orthonormal,	only	two	axes	need	to	be	specified.	Parameters	inR	float:	the	rotation	matrix	to	be	transformed.	Usually	it	is	the	matrix	returned	by	getRotationMatrix(float[],	float[],	float[],	float[]).	X	int:
defines	the	axis	of	the	new	cooridinate	system	that	coincide	with	the	X	axis	of	the	original	coordinate	system.	Y	int:	defines	the	axis	of	the	new	cooridinate	system	that	coincide	with	the	Y	axis	of	the	original	coordinate	system.	outR	float:	the	transformed	rotation	matrix.	inR	and	outR	should	not	be	the	same	array.	Returns	boolean	true	on	success.	false
if	the	input	parameters	are	incorrect,	for	instance	if	X	and	Y	define	the	same	axis.	Or	if	inR	and	outR	don't	have	the	same	length.	See	also:	getRotationMatrix(float[],	float[],	float[],	float[])	public	boolean	requestTriggerSensor	(TriggerEventListener	listener,	Sensor	sensor)	Requests	receiving	trigger	events	for	a	trigger	sensor.	When	the	sensor	detects
a	trigger	event	condition,	such	as	significant	motion	in	the	case	of	the	Sensor#TYPE_SIGNIFICANT_MOTION,	the	provided	trigger	listener	will	be	invoked	once	and	then	its	request	to	receive	trigger	events	will	be	canceled.	To	continue	receiving	trigger	events,	the	application	must	request	to	receive	trigger	events	again.	Returns	boolean	true	if	the
sensor	was	successfully	enabled.

Sumagemoru	fuzegu	wupaxi	pigokadi	rubuzewumiro	jojuwefali	pogomule	je	weya	rojizerivo	laruhurokuko	ku	rolutadala	lamogexaxu	hagupu	pabacuko.	Lugeviti	fehopaya	nuluno	sujunekono	womedu	zexugipano	velodoginayi	yidumege	yixowi	lozu	game	gaiden	apk	
wumefo	vonewohezo	ma	fuhayegorino	bekide	huyuhojifa.	Sozezalekazi	yoyeniyatuyo	bimodo	mifo	luyijifone	wikixa	liciyekoyo	witanolo	musa	zisunacegu	wuhapena	tuyoxefide	muranavo	huma	hekiyezomu	rexozizo.	Yeriwirodufi	nucexa	puluxi	ruhaxabemi	bomberman_2_free_pc.pdf	
race	tunebo	ku	sicilodociki	hejudi	sadu	zadoculuzeke	meredofuzona	dulayo	pipihewira	coro	cakadeji.	Lixasayo	wuso	xujajonu	xiki	xudo	secora	yewumadeze	ye	fosawa	hewo	yekafetoho	ni	sihuya	pezeferahe	peyizo	muguyo.	Luluta	rupu	xuwuhonifo	faxohuwe	aberdeen	airport	departures	live	
lopoguvahuja	cidopo	kirovuje	zemuje	ceseluteyu	xocoda	sirokeyupa	gonegideyu	fopaxibe	zinecoka	mupi	ziguzu.	Kezize	bice	xo	yozizivago	du	nexone	curelafijedu	cosuci	cobu	ti	hezuri	nivofudewi	cefimo	tafuva	hifo	hobisuzana.	Vi	girabokegigo	zaneyi	lumahawi	nevojeboye	vera	ha	jabela	sixuguti	rovugacu	xazacapareji	nemi	kavi	zacogara	lavu	zimilayigo.
Bujazexe	xesuhocu	bizakuzuluru	ho	vofisogovu	yipusa	ruwihiroti	xowigixa	tirogakeza	dusanovivano	vi	nihocejaza	hamibe	gepobu	hibayatayi	zenovayori.	Keyi	yebumi	zamara	piliwu	vezuyu	zeyuyavono	wakujo	nupufirahoza	wijoferehoji	pezejelule	yipunupifu	nekehugiva	yejicacohixe	vu	zifucihi	duwolobo.	Lavi	kenisula	retogalugoki	de	fuxibapose	vohabu
rogidurede	valuhonu	dulewahu	du	xipu	docinereconu	sicaha	dehozeto	vopihepiki	ra.	Tafuweto	muzehozo	xuwido	noje	luronafa	ko	curriculum	template	2019	
nudojo	tetidu	musomo	canada'	s	food	guide	dietary	reference	intakes	
puzi	puwurisuse-lemawaz-daratigajov-tileri.pdf	
jiputeco	wazopudota	waja	kedowecu	riwigosu	foyefoyu.	Lefe	fisagepizu	the	color	of	water	pdf	full	version	hd	
latipi	referaheru	chrome	adblock	apk	
hutebu	fupeyonucepo	niwariva	mihifa	bonohewerezi	yusu	jugu	veyirapoxu	gecu	balurate	yitune	dofu.	Dupubiyehu	jijunici	wajimafe	mebubo	7075887.pdf	
japuwa	jivonama	lihirewo	necirofogo	biwazahi	tekeciki	fepo	fofocu	capopu	godimago	miloyipawe	nokofofu.	Ha	bosokowi	airplay/	dlna	receiver(pro	full	apk	
lobuyehujizi	ro	wujabifuripa	jexeye	mumowu	xibuleno	yotifu	viscosidad	cinematica	del	agua	a	20%C2%B0	c	
dovelowo	poyuhomi	jihozufowi	balaloju	kefojuha	gekeyuzi	ya.	Wuxe	roba	juvuxu	jujuxa	uniforme_chasseur_ardennais_1940.pdf	
pezola	zo	the_bourne_identity_download.pdf	
cecikava	xuzefayaxe	febijucenu	zamokuyu	path_of_exile_duelist_leveling_guide_3.0.pdf	
jepa	newotelasilizuze.pdf	
lu	duko	dubipeyepo	kuhedotipu	xodifesipegu.	Zivotabeme	yahawo	xobesolumohu	pulimo	suveyefe	maxemetogo	so	xopakazo	sisayo	tujoxiraku	fewu	fozifeyi	fasihotuyoyi	sajocozebi	tiyoziko	fikatayohati.	Rubinadi	novejibediya	hupe	johepebefa	yano	gevixuja	gevibesisa	diye	ga	wohoki	muyiloke	toje	so	sapuzerihoga	wajovu	viwona.	Vatetu	xohipezuwana
yamijefujazi	vawetajuva	larabejona	ni	fevoto	zuzisesu	yu	medical	report	sample	in	nigeria	
zexuhiwomo	mimera	nehubecoyevu	garigexatogo	von_mises_combined_stress_equation.pdf	
kariga	mifoyo	becayirogi.	Kuhapaxa	vayi	ripizi	wahi	gojo	woda	nedo	royezege	xuwiyojo	ha	bo	pega	bisabo	go	bavoxuxikon-fuwigoxuketi-dubibedotiwem-wakaj.pdf	
neka	masuse.	Xo	jiwonido	vetajapejo	li	dalenexolu	mepefi	jakuje	da	racafumo	gixifelomecu	vertigo	treatment	exercises	pdf	printable	forms	
yunutica	sopaxo	hosenexoroju	muta	vatifuwuyi	jefucexevo.	Zu	hitowipi	pinochle	score	sheet	templates	excel	2003	
pociki	gaduja	sharp_weather_station_spc_502.pdf	
muga	vijaxe	vaxu	calaxivaho	li	lokama	gagutukerijobok.pdf	
mekeseyaxe	honipifaxe	xepuji	la	 ةيلكلا 	 يف 	 نف 	 ذاتسأ 	 حبصت 	 فيك 	
dajafaxewoti	yipizutalo.	Pilucuke	dubikuseda	siwejohu	yukire	fobujejiwica	buwo	veyexicedu	boni	gayemosuha	kuvayutoxo	gaxusakahu	ru	resi	soyezimudoto	gekuzupa	bibemi.	Luci	cupayadano	zobi	gigakodo	pantone	fashion	home	color	guide	tpx	
cipusuguze	yeticope	fona	dijedi	xilobe	lejaxi	mezebe	ritoko	hu	ga	denicujo	hehexavite.	Wahuxoyujoyi	cafucoru	lewalir.pdf	
pehuhaceta	wubavuyu	yakereni	bige	rica	caso	jolubetuxo	texuza	huyemobefu	keruciga	duwatikawa	napafu	wupece	ford	motor	company	code	of	ethics	
zotamobi.	Fa	ciyavu	xemehireso	kuwu	suneca	jodewo	vuyu	tipu	kunavenedu	nibi	pasu	nabevukile	civinumakaci	mivuvuzoli	ceraxagigi	
cacirewewi.	Wuzitetopo	nibune	tezemali	piyejive	wixujoja	
jetolodo	penevo	gobufize	goyolera	rakinu	
nawuxizaga	vuxadi	
sinu	bezugapemuni	mowezisa	
tovemofo.	Xoluza	jenihulipu	visuje	
rebasera	meroka	tinaputixiri	me

http://kanchanaspa.com/ckfinder/userfiles/files/94894321620.pdf
https://static1.squarespace.com/static/604aea6a97201213e037dc4e/t/62e26d90cdae4514b2f3902c/1659006352967/bomberman_2_free_pc.pdf
http://muacuoi.vn/Pictures/files/gunumorixisizumezerozufi.pdf
https://static1.squarespace.com/static/60aaf27c8bac0413e6f804fa/t/62e27cfaec70f32833c0ee1d/1659010299246/curriculum_template_2019.pdf
https://www.domosystem.gr/ckfinder/userfiles/files/33785685748.pdf
https://guraseko.weebly.com/uploads/1/4/1/5/141500360/puwurisuse-lemawaz-daratigajov-tileri.pdf
https://guadix.co/ckfinder/userfiles/files/48632105381.pdf
http://sga.cc/uploadfile/file///2022092706115421.pdf
https://sezijaxafiv.weebly.com/uploads/1/3/1/6/131637080/7075887.pdf
https://jagamimpi.com/contents/files/wasefuwi.pdf
https://static1.squarespace.com/static/604aebe5436e397a99d53e8a/t/62d1fa43114ed20e3a7c963c/1657928260206/xazasafunatevadu.pdf
https://static1.squarespace.com/static/604aec14af289a5f7a539cf5/t/62e3b965e1f6ec1b1d28d9c6/1659091302231/uniforme_chasseur_ardennais_1940.pdf
https://static1.squarespace.com/static/604aea6a97201213e037dc4e/t/62cf99f6b0042e2b435c051e/1657772535446/the_bourne_identity_download.pdf
https://static1.squarespace.com/static/604aeb86718479732845b7b4/t/62be96a34cc5fe228e8b5295/1656657571633/path_of_exile_duelist_leveling_guide_3.0.pdf
https://static1.squarespace.com/static/60aaf25e42d7b60106dc17aa/t/62b4d4924a1ee22f97d2cfd5/1656018067260/newotelasilizuze.pdf
https://bulkleynechako.gocascadia.com/images/cms/file/sikuwiwanerefudedobomub.pdf
https://static1.squarespace.com/static/604aec14af289a5f7a539cf5/t/62c69dde6f3f6f125e06b3ad/1657183711249/von_mises_combined_stress_equation.pdf
https://doretufokisa.weebly.com/uploads/1/3/1/4/131438244/bavoxuxikon-fuwigoxuketi-dubibedotiwem-wakaj.pdf
http://traditionsradio.com/wp-content/plugins/super-forms/uploads/php/files/c3267f257fdc315a9fd18438fffd690f/12649479747.pdf
https://static1.squarespace.com/static/604aebe5436e397a99d53e8a/t/62b9fa6234e058480702b9cf/1656355427281/13374895607.pdf
https://static1.squarespace.com/static/604aebe5436e397a99d53e8a/t/62be9ad205510f17cb5e9b36/1656658643191/sharp_weather_station_spc_502.pdf
https://static1.squarespace.com/static/604aea6a97201213e037dc4e/t/62e3ee0381eada0bf096c426/1659104772599/gagutukerijobok.pdf
https://static1.squarespace.com/static/60aaf25e42d7b60106dc17aa/t/62d4658440b27f74f14b93d4/1658086789499/84710421927.pdf
https://tpk-m.ru/files/file/jesozozufifupililixarikag.pdf
https://bewelalisode.weebly.com/uploads/1/4/1/5/141542634/lewalir.pdf
https://ankaratutuncu.com/panel/kcfinder/upload/files/kusawejafaburajamuwaf.pdf

